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Abstract

Many signal processing and machine learning applications are built from evaluating a kernel on
pairs of signals, e.g., to assess the similarity of an incoming query to a database of known signals.
This nonlinear evaluation can be simplified to a linear inner product of the random Fourier features of
those signals: random projections followed by a periodic map, the complex exponential. It is known
that a simple quantization of those features (corresponding to replacing the complex exponential by a
different periodic map that takes binary values, which is appealing for their transmission and storage),
distorts the approximated kernel, which may be undesirable in practice. Our take-home message is
that when the features of only one of the two signals are quantized, the original kernel is recovered
without distortion; its practical interest appears in several cases where the kernel evaluations are
asymmetric by nature, such as a client-server scheme.

Concretely, we introduce the general framework of asymmetric random periodic features, where the
two signals of interest are observed through random periodic features—random projections followed
by a general periodic map, which is allowed to be different for both signals. We derive the influence
of those periodic maps on the approximated kernel, and prove uniform probabilistic error bounds
holding for all pair of signals picked in an infinite low-complexity set. Interestingly, our results allow
the periodic maps to be discontinuous, thanks to a new mathematical tool, i.e., the mean Lipschitz
smoothness. We then apply this generic framework to semi-quantized kernel machines (where only
one of the signals has quantized features and the other has classical random Fourier features), for
which we show theoretically that the approximated kernel remains unchanged (with the associated
error bound), and confirm the power of the approach with numerical simulations.

1 Introduction

Rather than to directly process high-dimensional signals, it is often more efficient to first summarize
them to their main features. This assumes that these capture essential information for the considered
processing, such as the proximity of any pair of signals. Mathematically, the signal summarization is
modeled by a feature map ϕ from the signal space Σ to the feature (or embedding) space E . This
map ϕ transforms the representation of signals while encoding some aspects of their geometry; loosely
speaking, this can be written as DE(ϕ(x),ϕ(y)) ≈ DΣ(x,y) for any pair of signals x,y ∈ Σ, where DΣ

is the preserved geometric quantity (such as an inner product or a distance), and DE is an evaluation
procedure acting only on the signal features. This approach is useful whenever the features ϕ(x) are
easier to process with respect to some critical computational resource (e.g., memory usage, computing
time)—often at the price of an approximation error (as suggested by the approximation symbol DE ≈ DΣ

above). The map ϕ is most often than not a randomized function (drawn from a distribution). There are
essentially three main ways to save computational resources with features: (i) leveraging dimensionality
reduction (i.e., ϕ(x) is encoded by much less coefficients than the dimension of x), such as in compressive
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sensing techniques [1], where typically the “embedding” ϕ is linear and DΣ and DE are the Euclidean
distances; (ii) using mappings that linearize the evaluation of an otherwise nonlinear quantity, such as
random Fourier features (RFF) [2], where DΣ is a kernel κ and DE is simply the inner product; and
(iii) quantizing features, where ϕ(x) produces a quantized output that can be encoded with a highly
reduced bitrate compared to the initial signal, allowing reducing the memory and/or transmission load,
as well as paving the way for hardware-based procedures. This quantization objective is often combined
with either (i), as in quantized compressive sensing [3–5], or (ii), as in one-bit universal embeddings [6].
As made clear below, our contributions also target the combination of (ii) with (iii).

In all those applications, it is almost always assumed that the available features for the two signals
x,y ∈ Σ come from the same feature map ϕ (we say the features are symmetric). However, we can
legitimately wonder if removing this assumption, i.e., accessing the signals through features ϕ(x) and
ψ(y), where we have the freedom to set ϕ 6= ψ, can further reduce specific computational resources. The
practical interest of this relaxation—that we call asymmetric features—arises when the two signals come
from different sources (i.e., when the setting is intrinsically asymmetric): for example, those sources
might have different resources (such as memory or power) at their disposal, and will therefore benefit
differently from techniques (i)-(iii).

In this work, we are interested in asymmetric features for linearizing kernel estimations, as explained
in (ii). Anticipating over the detailed description of Sec. 2, we work with random periodic features,
ϕ(x) := f(ΩTx + ξ) and ψ(y) := g(ΩTy + ξ) with Ω a random projection matrix, ξ a random
dither, and f, g two periodic functions. We thus generalize the context of random Fourier features
[2], where f(·) = g(·) = exp(i·) (the complex exponential), by “breaking the waves” with possibly
discontinuous, distinct functions f and g (as described in Sec. 4). We show how those features can
be used to approximate shift-invariant kernels κ, i.e., 〈ϕ(x),ψ(y)〉 ≈ κ(x,y), in expectation over the
random quantities Ω, ξ. Our motivating use-case is to combine this approach with harsh quantization
of some features, objective (iii), as we explain in the next paragraph. However, all our developments are
generic, and of interest for any machine learning algorithm that processes or takes decisions from the
local geometry of data.

Semi-binary kernel machines as a motivating application: If one of the periodic functions
incorporates the quantization of the feature vector (say, the one-bit universal quantization, or square
wave function q : R → {0, 1} [7]; see Fig. 2), then that feature vector can be stored or transmitted
(or both) much more efficiently than the usual (infinite-precision) random Fourier features. Consider
for example a machine learning context, where a kernel method [8] such as a Support Vector Machine
(SVM) [9] has been trained in advance on some dataset X = {xi}ni=1 ⊂ Σ. To actually use this model
for prediction on a new signal x′ ∈ Σ, the physical device that records it must either communicate with
a server where the inference is performed remotely (Fig. 1a), or implement this model directly (Fig. 1b);
in either case, this is an expensive operation whenever this device is under tight computational resources
constraints, and quantization of feature vectors is potentially very helpful.

In the first scenario (inference done remotely on a server), we might quantize the feature vector
of the query signal, ϕ(x′) ∈ {0, 1}m (but not the feature vectors of the dataset ψ(xi)). This allows
to heavily reduce the bitrate when communicating this vector to the server, and even paves way for
computing those features directly in hardware, e.g., relying on voltage-controlled oscillators [10]. In the
second context, we could conversely binarize the feature vectors of the dataset so that ψ(xi) ∈ {0, 1}m
for all xi ∈ X, but not the incoming query vector ϕ(x′) (it is even possible to encode only a subset of
the dataset features for models that only need to access some entries, such as SVM with the support
vectors). The advantage here is that the memory needed to store the model is heavily reduced, with
additional computational benefits coming from the embedded processing of binary values. This idea has
received significant attention in the literature, e.g., following [11] for nearest-neighbor search.
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Figure 1: Two motivating applications of our results (from Sec. 6, in green): combining one-bit universal features with
usual random Fourier features yields the same desired kernel κ. (a) A “client” device records a “query” signal x′, and
transmits its quantized features zq(x

′), encoded efficiently as only m bits, to a “server” device that can evaluate the kernel
similarity with the rest of a dataset from their usual n full-precision RFF {z(xi)}ni=1. (b) A lightweight device implements
a kernel method with very low memory requirements, only having to store {zq(xi)}ni=1 the n one-bit feature vectors of the
dataset instead of the full-precision ones, provided the usual RFF z(x′) are used for the incoming query vectors.

For both of those examples, the main question that we seek to answer is to quantify the loss of
accuracy (induced by quantization) as a function of the feature vector length m. More precisely, our
goal is to obtain (probabilistic) guarantees on the decay of the kernel approximation error as a function
of m, that hold uniformly for any pairwise comparisons of signals taken an infinite (but compact) set
Σ. In this case, the main challenge lies in dealing with the discontinuous nature of the quantization
operation—handling discontinuities is thus one of the key features of this paper.

1.1 Related work

Before detailing the elements of our approach, we find useful to mention a few related works, showing
how they inspired us, and stressing their connections and differences with our contributions.

Quantization of (symmetric) random Fourier features: The construction of the general random
periodic features considered in this work is instantiated in Sec. 6 to the case where the corresponding
periodic map is the universal quantizer (or square wave function). This approach was introduced in [7,12]
as a binary map preserving local distances (i.e., up to a given radius), the universal quantized embedding.
Those features have subsequently been used for kernel methods in [6], which is similar to the framework
we propose but where not one but both signal features being compared are quantized in a symmetric
fashion, which distorts the kernel to be recovered. This line of work was further generalized is [13],
where uniform guarantees are derived for generic periodic function (possibly discontinuous) instead of
the one-bit universal quantizer, holding on infinite signal sets. This defines the random periodic features
approach (see Sec. 2 for details) that we also consider; we provide an in-depth description of how our
results relate to (and complement) those from [13] in Sec. 5.

Back to the particular problem of quantizing random Fourier features, another line of work [14]
shows that a specific stochastic quantization hardly harms the generalization performances of RFF-
based algorithms. The ultimate objective of this last work is, however, fairly different from ours: the
authors seek to reduce the memory requirements during training by performing a more sophisticated
quantization, and then use the full-precision RFF for the subsequent inference stage; on the other hand,
our objective is to provide a simple quantization scheme to reduce the resources during the inference
stage, without concerns for how the training was performed.
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Asymmetric features and quantizations: The possibility to use asymmetric features has been
explored for linear embeddings in [15], as an additional degree of freedom to minimize (in a data-
dependent fashion) the average error of the distance estimation. In [16], weighted universal embeddings
are used for distance estimation, where the weights depend upon one of the two signals (which makes
the scheme asymmetric) to decrease the error on this estimation. Closer to our context, in [17], it is
experimentally shown for a broad set of feature maps (such as Locality Sensitive Hashing, universal
embeddings, and several variants of PCA) that quantizing the features of the dataset but not of the
query (as in scenario Fig. 1b) significantly improves the performances compared to quantizing both
features. Similarly, the authors of [18,19] recently considered linear random projections (with the same
matrix) of two signals that have been quantized with different quantization levels.

Compressive learning: In a nutshell, compressive learning [20,21] aims at estimating the parameters
of a distribution P, or the parameters of a parametric distribution approximating it, from the sketching
of an entire dataset of n signals X = {xi}ni=1 generated by P, i.e., such that xi ∼i.i.d. P. Given a
random projection matrix Ω, the sketch sX := 1

n

∑n
i=1 z(xi) is computed from the pooling (averaging)

of the random Fourier features z : u → exp(iΩ>u) (the exponential being computed componentwise
onto vectors) of each dataset signal. For large value of n, this sketch estimates the characteristic function
A(P; Ω) := Ex∼P exp(iΩ>x) of P over the “frequencies” supported by the rows of Ω. Therefore, under
appropriate conditions, one can formulate an inverse problem aiming to estimate the parameters of
P by matching the characteristic function of a probing distribution P̂ (estimated over Ω) from sX ≈
A(P; Ω). We considered in [22] the possibility to replace the random Fourier features used to build
sX with a general (dithered) periodic function f , such as the universal quantizer, thus computing
s′X = 1

n

∑n
i=1 zf (xi) = 1

n

∑n
i=1 f(Ω>xi + ξ) with a random dither ξ. While the dataset sketch is

altered (e.g., quantized with the universal quantizer), we showed that the estimation of the distribution
parameters from the observed sketch is still accurate if we use the RFF (for the probing distribution), as
if the sketch was not quantized, hence leading to an asymmetric scheme between the dataset sketching
and the estimation procedure.

1.2 Paper organization

We provide in Sec. 2 several preliminary elements as well as important concepts of the relevant literature:
random Fourier features and their (possibly quantized) extension to any periodic nonlinearity. We
then start by analyzing how the kernel approached by asymmetric random periodic features behaves in
expectation (in the asymptotic case), which is proved in Sec. 3. Our main results come in Sec. 4, where
we prove uniform error bounds of the kernel approximation for infinite signal sets. In order to do so, we
introduce a new tool, the mean Lipschitz smoothness property. Sec. 5 relates our approach to the context
of geometry-preserving embedding (or coding) developed in [13], solving in the same time an error in
the proof of one of their results. Next, we apply our general results of Sec. 4 to the semi-quantized
setting motivated above in Sec. 6, and illustrate with numerical experiments in Sec. 7, before concluding
in Sec. 8.

1.3 Notations

Vectors and matrices are denoted by bold symbols. The unit imaginary number is noted i =
√
−1.

The real part, the imaginary part, and the complex conjugation of a ∈ C read <(a), =(a), and a∗,
respectively. We will often consider bounded 2π-periodic functions f, g : R → C for which the 2-norm
and the infinity norm read ‖f‖2 = 1

2π

∫ 2π
0 |f(t)|2dt and ‖f‖∞ := supt∈[0,2π] |f(t)|, respectively, and the

inner product of f and g is 〈f, g〉 = 1
2π

∫ 2π
0 f(t)g∗(t)dt. For brevity and clarity, we will sometimes refer

to a function using the “dot” notation, e.g., exp(i·) for the function t 7→ exp(it) ∈ C for t ∈ R.
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The `p-norm of a vector u ∈ Rd reads ‖u‖p = (
∑

i |ui|p)1/p for p > 1, with ‖u‖∞ = maxi |ui|,
and ‖u‖0 = |suppu| = |{i : ui 6= 0}|. The unit `p−ball (p > 1) in dimension d is noted Bdp := {u ∈
Rd | ‖u‖p 6 1}, with the shorthand Bd = Bd2. The cardinality of a finite set S is |S|, the Minkowski sum
of two sets A and B is A+B = {a+ b : a ∈ A, b ∈ B}, the index set in Rd is [d] := {1, · · · , d} for d ∈ N,
the identity matrix in Rd is Id ∈ Rd×d, and the Kronecker delta δk,k′ is defined as δk,k′ = 1 if k = k′ and
δk,k′ = 0 otherwise. By abuse of notation, evaluating a scalar function f : R → C on a vector u ∈ Rm
means applying this function componentwise, i.e., f(u) ∈ Cm with (f(u))j = f(uj).

We use the convention where the (d-dimensional) Fourier transform of a function f : Rd → C reads

f̂(ω) = (Ff)(ω) := 1
(2π)d

∫
Rd e

−iu>ωf(u)du, with inverse (F−1f̂)(u) :=
∫
Rd e

iu>ωf̂(ω)dω. The same

convention is used for the Fourier transform of finite measures on Rd. The notation ∼ P denotes
that a random variable, vector or function is distributed according to the distribution P. The uniform
distribution on a set A is noted U(A), and “i.i.d.” means “identically and independently” distributed.
In all our developments, except if specified differently, C,C ′, . . . , c, c′, . . . > 0 denote universal constants
whose value may change from one instance to the other.

2 Preliminaries

We introduce here several fundamental concepts supporting our approach. We first precise the kind of
signal space we consider, as well as how signals are compared through a kernel, before to briefly explain
the principles sustaining the definition of random Fourier features (RFF). Next, we generalize RFF to
any random periodic features for a family of bounded periodic functions.

2.1 Signals and kernels

In this work, we focus on signals belonging to a bounded signal space Σ ⊂ Rd having finite Kolmogorov
η-entropy Hη(Σ) for any radius η > 0 [23]. This entropy, defined as Hη(Σ) := log Cη(Σ), is related to the
covering number Cη(Σ) of Σ, the cardinality of the smallest finite subset of Σ that covers it with balls
of radius η. Using the Minkowski sum, this means that

Cη(Σ) := min{|S| : S ⊂ Σ ⊂ S + ηBd2},
which is finite for any compact set Σ.

The Kolmogorov entropy measures the intrinsic dimension of Σ in Rd. In particular, Hη(V ∩ Bd2) 6
Cd′ log(1 + 1/η) for any subspace V ⊂ Rd of dimension d′ 6 d [24], and the set of s-sparse vectors
Σs := {x ∈ Rd, ‖x‖0 6 s} restricted to the unit ball has entropy bounded by Hη(Σs ∩ Bd2) 6 C ·
s log(d/s) log(1 + 1/η), see for example [25]. Other bounds exist for, e.g., the set of bounded group
sparse signals [26], bounded low-rank matrices [27], or for specific low-dimensional manifolds [28].

At the heart of our study is the comparison of two signals through a kernel, i.e., a function over
pairs of signals κ : Σ × Σ → C (in the machine learning literature, kernels are usually real-valued).
Typically, invoking the so-called “kernel trick” [9], κ represents the inner product between the input
signals x,x′ when they are mapped in some implicit feature space by an appropriate map φ : Σ → H:
κ(x,x′) = 〈φ(x), φ(x′)〉H for some Hilbert space H. By definition of the inner product, the kernel κ
must then necessarily be conjugate symmetric (κ(x,x′) = κ∗(x′,x)), and positive definite (p.d.), i.e.,
for any number n,

∑n
i,j=1 cic

∗
jκ(xi,xj) > 0 for all x1, . . . ,xn ∈ Σ and c1, . . . , cn ∈ C.

2.2 Random Fourier features

Random Fourier features (RFF) are implicitly built on Bochner’s theorem [29]. This theorem states that
a shift-invariant continuous kernel κ(x,y) = κ∆(x− y) (for some κ∆ : Σ−Σ→ C) is positive definite if
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and only if it is the (inverse) Fourier transform of a nonnegative finite measure Λ, i.e.,

κ positive definite ⇔ κ∆(u) = (F−1Λ)(u) =
∫
Rd e

iω>udΛ(ω). (1)

In particular, assuming w.l.o.g. the normalization κ(x,x) = κ∆(0) = 1, Λ is a probability distribution

over Rd, and the kernel can be written κ∆(u) = Eω∼Λ e
iω>u. The key idea of random Fourier features [2]

is thus to construct low-dimensional features z(x), z(y) whose inner product approximates the kernel
κ(x,y) by Monte Carlo sampling of this expectation.

Definition 1 (Random Fourier features). Let κ(x,y) = κ∆(x − y) be a shift-invariant p.d. kernel,
normalized such that κ∆(0) = 1, with Fourier transform Λ = Fκ∆. Given a target dimension m, the
associated “complex” random Fourier features are

z(x) := 1√
m

exp
(
i(Ω>x+ ξ)

)
∈ Cm, (2)

with random projections (or “frequencies”) Ω := (ω1, · · · ,ωm) ∈ Rd×m generated as Ω ∼ Λm, i.e.,
with ωj ∼i.i.d. Λ for j ∈ [m], and a random dither ξ ∈ Rm generated as ξ ∼ Um([0, 2π)), i.e., with
ξj ∼i.i.d. U([0, 2π)) for j ∈ [m]. We also define the “real” random Fourier features zcos(x) as <[z(x)],
the real part of those features:

zcos(x) := 1√
m

cos
(
Ω>x+ ξ

)
∈ Rm. (3)

Remark. The dither ξ was initially introduced in [2] when only the real RFF zcos(x) were used; in
the (more widely used) complex case ξ is not necessary (see [30] for an in-depth comparison of the
“real” versus “complex” random Fourier features). We still included it in this definition for the sake of
consistency with Def. 2 below.

By direct application of Bochner’s theorem, the inner product of RFF indeed approaches (in ex-
pectation over the draw of the frequencies Ω) the target kernel: E〈z(x), z(y)〉 = κ(x,y). Moreover,
for a finite feature dimension m, the error of the kernel approximation κ̂(x,y) := 〈z(x), z(y)〉 can be
uniformly bounded (i.e., bound the absolute error |κ̂(x,y)− κ(x,y)| for all values x,y in Σ), with high
probability on the draw of Ω (we work with different normalization choices, so the result we present here
differs slightly from the initial bound [2, Claim 1]). Finer bounds can be found, among others, in [30,31].

Proposition 1 (Uniform kernel approximation error for RFF). Let Σ be a compact set, and z(x) be the
RFF defined above. Assume that there exists an associated constant CΛ, such that

Eω∼Λ |ω>a| 6 CΛ‖a‖2, ∀a ∈ Rd. (4)

Provided that, for ε > 0,
m > Cε−2Hcε/CΛ

(Σ),

the kernel approximation κ̂(x,y) = 〈z(x), z(y)〉 has error uniformly bounded by

∣∣κ̂(x,y)− κ(x,y)
∣∣ 6 ε, ∀x,y ∈ Σ,

with probability exceeding 1− C ′e−c′mε2.

Proof. This version of the RFF approximation error is obtained as a particular case of our Prop. 5;
see [2] for the initial result.
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The constant CΛ defined in (4) characterizes the smoothness of the kernel (if the kernel is smoother, it
exhibits less high-frequency content, and CΛ will be lower). In most of the RFF literature, this constant
is bounded by the Cauchy-Schwarz inequality as CΛ = Eω∼Λ ‖ω‖2. Then, one can (as done in [2]) further
bound Eω∼Λ ‖ω‖2 6 σΛ where σ2

Λ is the second moment of Λ, equivalent to the kernel curvature at the
origin, i.e., C2

Λ 6 σ2
Λ := Eω∼Λ ‖ω‖22 = ∇2κ∆|u=0, with ∇2 the Laplacian operator. However, for specific

distributions, using the Cauchy-Schwarz inequality in high dimension leads to a loose bound of CΛ. For
example, if the covariance matrix of ω is upper bounded by σ̃2

ΛId for some σ̃2
Λ > 0 (if, e.g., F−1Λ is the

Gaussian RBF (“radial basis function”) kernel with radius 1/σ̃2
Λ, Λ is isotropic [32], or if each component

of ω are i.i.d. with variance bounded by σ̃2
Λ) then

(
Eω∼Λ |ω>a|

)2
6 Eω∼Λ |ω>a|2 = a>

(
Eω∼Λωω

>)a 6 a> · σ̃2
ΛId · a = σ̃2

Λ‖a‖22.

In this case we obtain CΛ = σ̃Λ, while Cauchy-Schwarz gives
√
d · σ̃Λ, hence overestimating the constant

by a factor
√
d.

Example 1. Consider the simple case where the signals of interest have an `2-norm smaller than 1
and lie in a union of S subspaces of Rd, each with dimension s. This signal space model encompasses,
for instance, Σ = Bd2 (that is, where S = 1 and s = d), the set of bounded s-sparse signals in Rd for
which S =

(
d
s

)
6 ( eds )s and each subspace (one per fixed sparse signal support) has dimension s, or more

advanced models with structured sparsity [26,33]. For such a model, the Kolmogorov entropy is bounded
by Cs · log

(
1
η

)
6 Hη(Σ) 6 C ′s · log

(
1+ 2

η

)
+logS (see, e.g., [34, Lemma 10]). Assume that we target the

usual Gaussian kernel with unit bandwidth, hence CΛ = 1. In this case, the RFF kernel approximation
error is uniformly bounded over Σ, with high probability, provided that the number of features satisfies
m > Cε−2

(
s log( 1

cε) + logS
)
. For instance, for bounded s-sparse signals we need m > Cε−2s log( edcs ε).

2.3 Random periodic features

A crucial generalization to RFF has been proposed in [13], where the complex exponential is replaced by
a generic periodic function f . We refer to this approach as random periodic features (RPF). Without loss
of generality, we make the following normalization assumptions throughout this work: f has period given
by 2π, is centered (zero mean), and takes (absolute) values bounded by one. We note this compactly as

f ∈ PF, with PF := {f : R→ C | f is 2π-periodic,
∫ 2π

0 f(t)dt = 0, ‖f‖∞ 6 1}.
Functions of PF can be expressed as a Fourier series of the following form

f(t) =
∑

k∈Z Fke
ikt, where Fk := 1

2π

∫ 2π
0 f(t)e−iktdt. (5)

Note that f ∈ PF implies F0 = 0 (because f is centered) and |Fk| 6 1 (because f is bounded).

Definition 2 (Random periodic features). Let f be a generic periodic function, normalized such that
f ∈ PF, and Λ a probability distribution on Rd. Given a target dimension m, the associated random
periodic features are

zf (x) := 1√
m
f(Ω>x+ ξ) ∈ Cm, (6)

with a d×m random projection matrix Ω := (ω1, · · · ,ωm) ∼ Λm, and a random dither ξ ∼ Um([0, 2π)).

Remark. As the complex exponentiation satisfies exp(i·) ∈ PF, this definition includes the classical
random Fourier features, with z(x) = zexp(i·)(x). The real RFF zcos(x) are also a particular case of this
definition.

The geometry induced by such generic features can be characterized the inner product κ̂f,f (x,y) :=
〈zf (x), zf (y)〉. As explained by the following result (adapted from [13, Theorem 4.4]), this product is
associated with a modified kernel κf,f (x,y) (the rationale for these notations is clarified in the next
section).

7



−2π −π 0 π 2π
−1

0

1

q(t)

t

0 2 4

0.0

0.5

1.0

‖x− y‖2

κ(x,y)

κq,q(x,y)

Figure 2: (Left) The solid black curve represents the universal quantization function q(t) (with q ∈ PF) defined in (8). Up to
a shift and rescaling, this function corresponds to the least significant bit of a standard uniform scalar quantizer. In dashed
green, we display the related integrand Iδ(t), with δ = 0.35. This quantity refers to the proof of the mean smoothness
(Def. 3) of q in Prop. 6 (Sec. 6). (Right) When drawing Ω from a Gaussian distribution Λ = N (0, Id), the associated RFF
recover the Gaussian kernel κ (in black), but the RPF with universal quantization approximate a “distorted” kernel κq,q
(dashed red) whose almost linear behavior close to the origin is explained by (16).

Proposition 2 (Kernel from symmetric RPF). The inner product of random periodic features (6) ap-
proaches, on average, a kernel κf,f (x,y) := E〈zf (x), zf (y)〉 that is shift-invariant and given by

κf,f (x,y) =
∑

k∈Z |Fk|2κ∆(k(x− y)) =: κ∆
f,f (x− y), (7)

where κ∆(u) = (F−1Λ)(u) is the shift-invariant kernel associated with the distribution of Ω in the RPF.

Proof. This version is obtained as a particular case of our Prop. 3; see [13] for the initial result.

The modified kernel κf,f is thus a scale mixture of the initial kernel κ (that is approached by the
“classical” RFF), where the weight of scale k is given by |Fk|2. In the non-asymptotic case, the authors
of [13] show that, for all pairs of vectors taken in a finite set Σ of size N , κ̂f,f (x,y) quickly concentrates
around κf,f (x,y) when m is large compared to logN ; the deviation error scaling as O(

√
logN/m) when

m increases. Our result in Prop. 5 provides a uniform approximation bound valid for infinite sets.

Random periodic features were introduced as a general theoretical framework to analyze the so-
called universal quantization embeddings [7]; those binary embeddings encode the local distances (i.e.,
the distances below a given threshold) on an efficiently small number of bits. This embedding relies on
the “one-bit universal quantization” given by Q∆ : R → {0, 1} : t 7→ Q∆(t) = 1 if (2k − 1) 6 t/∆ 6 2k
for any k ∈ Z and 0 otherwise. It can be interpreted as the least significant bit of a usual, plain scalar
quantizer with stepsize ∆, and visualized as a square wave: see Fig. 2, left. Here, we will for convenience
use q instead, its normalized equivalent in PF,

q(t) := sign ◦ cos(t) =
∑

k∈ZQke
ikt, with coefficients Qk =

{
2
kπ (−1)(k−1)/2 if k odd,

0 if k even.
(8)

Using the universal quantization as periodic nonlinearity is appealing because zq(x) ∈ {−1,+1}m,
which can thus be encoded/transmitted by only m bits. However, as predicted by (7), the approximated
kernel is modified, as illustrated for the Gaussian kernel Fig. 2, right. Moreover, proving uniform kernel
approximation bounds (as in Prop. 1) for infinite sets Σ is specially challenging when the nonlinearity
f presents discontinuities (which is the case when f = q, for example). In [13], the authors introduced
a formalism (the T -part Lipschitz functions) to deal with this problem and to obtain uniform approxi-
mation bounds on infinite signal sets for the universal embeddings. As we explain in Sec. 5, the proof
relying on this approach is however wrong, which motivates us to introduce another tool, the mean
Lipschitz smoothness, to deal with discontinuous maps.
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3 Expected kernel (asymptotic case)

Following the considerations of the Introduction, let us now consider the asymmetric features setting
where a pair of signals of interest, x,y ∈ Rd, are available only through their random periodic features,
zf (x) and zg(y), as defined in (6). Those features are allowed to result from different periodic maps
f, g ∈ PF, but the preceding projection Ω and dithering ξ are kept identical.

In this section, we characterize the properties of the expected kernel yielded by the expectation, over
the draw of Ω and ξ, of the following “asymmetric” inner product:

κ̂f,g(x,y) := 〈zf (x), zg(y)〉. (9)

This asymmetric RPF kernel is defined from

κf,g(x,y) := EΩ, ξ 〈zf (x), zg(y)〉
= 1

m

∑m
j=1 Eωj ,ξj f(ω>j x+ ξj) g

∗(ω>j y + ξj)

= Eω∼Λ, ξ∼U([0,2π)) f(ω>x+ ξ) g∗(ω>y + ξ).

(10)

In the two bottom lines, we used the fact that ωj (and ξj) are independently and identically distributed,
for all j, with ωj and ξj mutually independent. Remark that by the law of large numbers, κf,g thus
corresponds to the kernel that the asymmetric inner product κ̂f,g approximates when we let the feature
space dimension m grow to infinity.

Proposition 3 (Expected kernel for asymmetric periodic random features). Let zf and zg be random
periodic features, associated with functions f, g ∈ PF, frequencies ωj ∼i.i.d. Λ = Fκ∆ and ξj ∼i.i.d.

U([0, 2π)). For any pair x,y ∈ Rd, the expected kernel κf,g(x,y) = EΩ, ξ 〈zf (x), zg(y)〉 satisfies

κf,g(x,y) =
∑

k∈Z FkG
∗
k κ

∆(k(x− y)) =: κ∆
f,g(x− y). (11)

Although here expanded as an infinite series, this kernel is bounded |κf,g| 6 1 since f, g ∈ PF.

Proof. Starting from the last line of (10), and decomposing f and g as their Fourier series,

κf,g(x,y) = Eω,ξ
∑

k∈Z
∑

k′∈Z FkG
∗
k′ e

ik(ω>x+ξ)e−ik′(ω>y+ξ)

=
∑

k,k′ FkG
∗
k′ Eω∼Λ e

iω>(kx−k′y) Eξ∼U([0,2π)) e
i(k−k′)ξ

=
∑

k,k′ FkG
∗
k′ κ

∆(kx− k′y) δk,k′ (12)

=
∑

k FkG
∗
k κ

∆(k(x− y)),

where in the third line we used Bochner’s theorem (1) and the orthogonality of complex exponentials on
one period: 1

2π

∫ 2π
0 eikte−ik′tdt = δk,k′ .

Example 2. As will be further developed in Sec. 6, when f(·) = cos(·) and g(·) = q(·) the universal
quantization defined in (8), we observe that the expected kernel is (up to a proportionality constant)
exactly the “initial” kernel approximated by the RFF, i.e., κcos,q(x,y) = 2

πκ(x,y).

The dither ξ plays here a crucial role: it cancels out (in expectation) the “cross-terms” in (12), each
related to FkG

∗
k′ κ

∆(kx − k′y) = FkG
∗
k′ κ(kx, k′y), that have different scales k 6= k′ for x and y. As a

consequence, the expected kernel is—as any kernel should be—conjugate symmetric, i.e., κf,g(x,y) =
κ∗f,g(y,x), despite the asymmetry of its empirical approximation, i.e., κ̂f,g(x,y) 6= κ̂∗f,g(y,x). The
dithering can thus be thought of as a means to symmetrize, through expectation, the kernel associated
with the asymmetric features inner product.
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For the same reason, the dithering ensures that the expected kernel remains shift-invariant; Prop. 3
provides κf,g(x,y) = κ∆

f,g(x−y), where κ∆ in (11) is the kernel related to the frequency sampling pattern
Λ. The expected kernel is thus a scale mixture, a linear combination of copies of κ∆, scaled (actually
contracted) by an integer factor k (which is non-zero, since F0 = G0 = 0), and weighted by coefficients
FkG

∗
k. In general, we expect this scale mixture κ∆

f,g to be narrower than the initial kernel κ∆ (or more
spread out in the frequency domain).

In general, however, the positive definiteness of κ does not imply that κf,g is p.d., since taking, for
instance, g = −f (i.e., FkG

∗
k = −|Fk|2 < 0) induces that κf,g(x,x) = −∑k |Fk|2κ∆(0) < 0 for all

x ∈ Rd. Whether κf,g is a positive definite kernel or not depends on the phase synchronization between
the Fourier coefficients of f and g. A sufficient condition for κf,g to be p.d. is to ensure that FkG

∗
k ∈ R+

for all k, as verified by taking f = g in Sec. 5, or the combination f = q, g(·) = cos(·) in Sec. 6 and
Sec. 7.

Remark. In light of (11), we could decide to normalize our approach differently. Assuming that f, g ∈
PF are not orthogonal, i.e., 〈f, g〉 6= 0, we can define, for x,y ∈ Σ, the normalized kernels

κ̃f,g(x,y) := 1
〈f,g〉〈zf (x), zg(y)〉, κ̇f,g(x,y) := 1

〈f,g〉κf,g(x,y), κ̇∆
f,g(u) := 1

〈f,g〉κ
∆
f,g(u). (13)

Since κ∆(0) = 1 and, from (11), 〈f, g〉 =
∑

k FkG
∗
k = κ∆

f,g(0), (13) ensures that, for any x ∈ Σ,
E κ̃f,g(x,x) = κ̇f,g(x,x) = κ̇∆

f,g(0) = 1 = κ∆(0). Without guaranteeing that κ̇f,g is p.d., this normal-
ization prevents the counterexample f = −g to lead to a kernel with negative value on the origin. For
clarity, we do not base our following developments on κ̇f,g(x,y) but we will refer to this useful quantity
in Sec. 6 when, for f = q and g(·) = cos(·), we will need to compare κ̇∆

f,g to the RFF kernel κ∆.

Let us now provide an alternative expression of the expected kernel κf,g(x,y) = κ∆
f,g(x − y), that

will prove to be useful in the next section.

Lemma 1. Define the correlation h between f and g,

h(t) := (f ∗ ḡ)(t) = 1
2π

∫ 2π
0 f(τ)g∗(τ − t) dτ, (14)

where ḡ(t) := g∗(−t) denotes the conjugate reverse of g, and ∗ the convolution operator on [0, 2π]. The
expected (shift-invariant) kernel κ∆

f,g can be expressed by

κ∆
f,g(u) = Eω∼Λ h(ω>u) = Eω∼Λ(f ∗ ḡ)(ω>u). (15)

Proof. By the convolution theorem, the Fourier series coefficients of h are given by Hk = FkG
∗
k. The

result follows from plugging this fact into the proof of Prop. 3.

Lemma 1 can be interpreted as an expansion similar to the one Bochner’s theorem provides: whereas the
initial kernel κ∆(u) =

∫
eiω>u dΛ(ω) can be expressed in a basis that is a family complex exponentials

eiω>u with “coordinates” given by Λ, κ∆
f,g(u) =

∫
h(ω>u) dΛ(ω) can be expressed in a basis that is

the family of functions {u → h(ω>u) : ω ∈ Rd}, another type of 2π−periodic functions (replacing the
complex exponential exp(i·) with h(·)).

As a side note, when Λ ∼ N (0, Id) and q is the square wave representing the universal quantization,
Lemma 1 allows us to easily explain the linear slope of κ∆

q,q at the origin (see Fig. 2, left). Indeed, in
this case h is the autocorrelation of q, the triangular wave

h(t) = (q ∗ q̄)(t) = max(1− |t′|π ,
|t′|
π − 1), with t′ := t mod 2π.

Therefore, defining h̃(t) := 1− |t|/π, since h(t) = h̃(t) for |t| < π, and 0 6 h(t)− h̃(t) 6 2(|t| − π)/π for
|t| > π, we find

κ∆
q,q(u) = Eω∼Λh(|ω>u|) = Eω∼Λh̃(|ω>u|) +R(u,Λ),
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with R(u,Λ) := Eω∼Λ[h(|ω>u|) − h̃(|ω>u|)] > 0. Since ω>u ∼ ‖u‖g with g ∼ N (0, 1), and E|g| =√
2/π, we find

R(u,Λ) 6 2√
2π

∫ +∞
π/‖u‖

2
π (r‖u‖ − π)e−

r2

2 dr = c
‖u‖

∫ +∞
π (s− π)e

− s2

2‖u‖2 ds

= c
‖u‖

∫ +∞
0 se

− s
2+π2+2πs

2‖u‖2 ds 6 c
2 e
− π2

2‖u‖2 E[‖u‖|g|] = c′‖u‖e−
π2

2‖u‖2 .

Moreover, Eω∼Λh(|ω>u|) = 1− ‖u‖π Eω∼Λ|g| = 1−
√

2
π3/2 ‖u‖, which finally proves that

∣∣κ∆
q,q(u)− (1−

√
2

π3/2 ‖u‖)
∣∣ = O

(
‖u‖e−

π2

2‖u‖2
)
. (16)

This shows that for ‖u‖ � π, κ∆
q,q(u) � 1−

√
2

π3/2 ‖u‖.

4 Approximation error analysis (non-asymptotic case)

In the practical setting where the vectors zf (x) and zg(y) are to be quickly processed or stored in
memory, their size m must be as small as possible. On the other hand, setting m too small hurts the
empirical estimation κ̂f,g(x,y) of the expected kernel κf,g(x,y) = E κ̂f,g(x,y). To understand this
trade-off, we are thus interested in a probabilistic bound for the (absolute) kernel approximation error
|κ̂f,g − κf,g|, as a function of the RPF dimension m. We give here an answer to this question under
generic assumptions, and show how to apply it in a concrete situation—for asymmetric kernel estimation
with one-bit quantized RFF—in Sec. 6.

4.1 Non-uniform approximation error

Ultimately, we want to obtain a (probabilistic) bound for the kernel approximation error that holds
uniformly over all x,y ∈ Σ. First bounding the error for one fixed pair (x,y) is often used as an easier
intermediary step. This is provided by the following proposition.

Proposition 4 (Non-uniform kernel approximation error from asymmetric periodic random features).
For two functions f, g ∈ PF, let zf , zg be random periodic features associated with frequencies Ω and a
dither ξ. For any fixed pair (x,y) ∈ Rd×Rd, the inner product κ̂f,g(x,y) = 〈zf (x), zg(y)〉 concentrates,
in probability over the draw of Ω ∼ Λm, ξ ∼ Um([0, 2π)), around κf,g(x,y) = EΩ, ξ 〈zf (x), zg(y)〉 as

P [|κ̂f,g(x,y)− κf,g(x,y)| 6 ε] > 1− 2e−mε
2/2. (17)

Proof. We rewrite 〈zf (x), zg(y)〉 = 1
m

∑
j Zj , with the random variables Zj := f(ω>j x+ξj)g

∗(ω>j y+ξj).
The Zj variables are i.i.d., have mean κf,g(x,y) by definition of the expected kernel (10), and are bounded
by |Zj | 6 ‖f‖∞‖g‖∞ 6 1 (because f, g ∈ PF). The result follows by Hoeffding’s inequality.

4.2 Uniform approximation error

We now want to extend the error bound in Prop. 4 to hold not only for one fixed pair (x,y) but
simultaneously over all pairs (x,y) ∈ Σ × Σ; this is called a uniform bound. The classical argument
invoked in this type of proofs (e.g., [2, 25, 35]) goes as follows. If Σ is a finite set (of finite cardinality
|Σ|), the uniform bound is obtained by applying a union bound over |Σ|2 instances of Prop. 4 (one for
each pair in Σ× Σ). In the case where Σ ⊂ Rd is an infinite but compact set, the strategy is to bound
the approximation error on a finite set Ση that covers Σ by balls of some radius η > 0, then to extend
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this bound by some notion of continuity (smoothness) over the η−balls. We then obtain a bound which
holds over Ση + ηBd2 ⊇ Σ, which concludes the proof.

In our setting, the last step of this proof technique would ideally use Lipschitz continuity; we say that
a function f : R→ C is Lipschitz continuous with constant Lf if, for all t, t′ ∈ R, |f(t)−f(t′)| 6 Lf |t−t′|,
which is equivalent to

∀t ∈ R, ∀δ > 0, sup
r∈[−δ,δ]

{|f(t+ r)− f(t)|} 6 Lf · δ. (18)

However, this strategy fails when any of the maps f or g is not Lipschitz continuous (e.g., when they
present discontinuities, such as the “square wave” universal quantization map q from (8)). To be able
to include such maps in our analysis, we must define a more permissive notion of smoothness, just as
the T -part Lipschitz property defined in [13] (but without the limitations explained in Sec. 5). In this
work, we rather introduce the concept of mean Lipschitz smoothness property for periodic function in
PF. Intuitively, a periodic function is smooth in the mean Lipschitz sense if its largest local deviation is
small on average.

Definition 3 (Mean Lipschitz property). Let f : R → C be a generic periodic function (here w.l.o.g.
assumed of period 2π). We say it is mean Lipschitz smooth with mean Lipschitz constant Lµf if for all

radii δ ∈ (0, π], the average maximum deviation of f in [−δ, δ] is bounded by Lµf · δ:

E
t∼U([0,2π))

sup
r∈[−δ,δ]

{|f(t+ r)− f(t)|} = 1
2π

∫ 2π

0
sup

r∈[−δ,δ]
{|f(t+ r)− f(t)|} dt 6 Lµf · δ. (19)

The mean Lipschitz property (that we will refer to as “mean smoothness” to avoid confusion with
the usual Lipschitz continuity when necessary) can truly be understood as the Lipschitz continuity after
an averaging. It is reminiscent of the mean modulus of continuity from [36,37] but where the order of the
supremum and averaging operations are reversed (which is less restrictive). If f is Lipschitz continuous
with Lipschitz constant Lf , then it has necessarily also the mean smoothness property with constant
Lµf 6 Lf . However, it is possible that Lµf � Lf (if the large slopes of f are concentrated on a small

portion of [0, 2π]), and discontinuous function can have a finite Lµf constant—for example, the square

wave q representing the universal quantization is mean smooth with constant Lµq = 4
π (see Prop. 6),

although it is not a Lipschitz continuous function. Leaving the detailed proof to Sec. 6, the trick is to
observe that the integrand Iδ(t) = supr∈[−δ,δ]{|f(t+ r)− f(t)|} is supported on an interval whose length
is proportional to δ, as shown Fig. 2, left. Moreover, the convolution of any PF function with a mean
smooth PF function yields a Lipschitz continuous one.

Lemma 2. Given two functions f, g ∈ PF, among which f is mean smooth with constant Lµf , their

convolution (f ∗ g) is Lipschitz continuous with constant Lf∗g 6 Lµf .

Proof. Re-writing (18) for (f ∗ g)(t) = 1
2π

∫ 2π
0 f(t− τ)g(τ) dτ gives, since ‖g‖∞ 6 1,

supr∈[−δ,δ]{|(f ∗ g)(t+ r)− (f ∗ g)(t)|} = sup|r|6δ

∣∣∣ 1
2π

∫ 2π
0 [f(t+ r − τ)− f(t− τ)] g(τ) dτ

∣∣∣

6 1
2π sup|r|6δ

∫ 2π
0 |f(t+ r − τ)− f(t− τ)| dτ

6 1
2π

∫ 2π
0 sup|r|6δ |f(τ ′ + r)− f(τ ′)| dτ ′ 6 Lµf δ.

In other words, the convolution of two PF functions, among whom one of them is mean Lipschitz, is
“smoother” than its factors, a property that comes from the convolution itself (which is to be put in

12



correspondence with the fact that for f differentiable and g discontinuous, f ∗ g is differentiable). In
particular, if both f and g are mean smooth with constants Lµf and Lµg respectively, their correlation

h = f ∗ ḡ is Lipschitz with Lh 6 min(Lµf , L
µ
g ). Coming back to our setting, this fact allows us (using

Lemma 1) to characterize the Lipschitz continuity of the expected kernel κ∆
f,g. With that, we have all

the tools to prove our main result, a uniform bound on the kernel approximation error obtained with
possibly discontinuous (but mean smooth) maps.

Proposition 5 (Uniform kernel approximation error from asymmetric periodic random features). Let
Σ be a compact set and f, g ∈ PF periodic functions with finite mean smoothness constants Lµf and Lµg ,

respectively, and let CΛ <∞ such that Eω∼Λ |ω>a| 6 CΛ‖a‖2 for all a (the kernel smoothness constant).

For all error level ε > 0, provided the feature dimension is larger than

m > 128 · 1
ε2
· Hε/c(Σ), (20)

with the constant c = 4CΛ(Lµf + Lµg + 2 min(Lµf , L
µ
g )), the following kernel approximation bounds holds

uniformly: ∣∣κ̂f,g(x,y)− κf,g(x,y)
∣∣ 6 ε, ∀x,y ∈ Σ, (21)

with probability exceeding 1− 3 exp(−mε2

64 ).

Proof. With Ση a finite optimal η−covering of Σ, any x′ ∈ Σ (resp. y′) can be written x′ = x+rx (resp.
y′ = y + ry) for centers x,y ∈ Ση, and rx, ry ∈ ηBd2. The proof proceeds by defining three events E1,
E2, E3 from which Prop. 5 follows, and then by bounding the failure probability of their joint occurrence.
First, for any covering center x ∈ Ση, we can expect that the set of m functions hfj : ηBd2 → C defined

for j ∈ [m] as hfj (r;x) := f(ω>j x + ω>j r + ξj) contains, on average, few “variations” over the η−ball.

More precisely, defining the largest variation of hfj (r;x) over the η−ball as

Hf
j (η;x) := sup

r∈ηBd2
|hfj (r;x)− hfj (0;x)| = sup

r∈ηBd2
|f(ω>j x+ ω>j r + ξj)− f(ω>j x+ ξj)|,

we first assume that, given ε1 > 0, the event E1 holds, with

E1 : supx∈Ση
1
m

∑m
j=1H

f
j (η;x) 6 LµfηCΛ + ε1.

Similarly for g, we define the event E2 such that

E2 : supy∈Ση
1
m

∑m
j=1H

g
j (η;y) 6 LµgηCΛ + ε2.

Next, we suppose that the kernel approximation has error bounded by ε3 for all the covering centers
x,y ∈ Ση, i.e.,

E3 : supx,y∈Ση |κ̂f,g(x,y)− κf,g(x,y)| 6 ε3.

Under those events, we establish a deterministic bound for all x′,y′ using a chain of triangle inequalities:

|κ̂f,g(x′,y′)− κf,g(x′,y′)| = |κ̂f,g(x+ rx,y + ry)− κf,g(x+ rx,y + ry)| 6 δ1 + δ2 + δ3 + δ4,

where the error terms are defined as

δ1 := |κ̂f,g(x+ rx,y + ry)− κ̂f,g(x,y + ry)|,
δ2 := |κ̂f,g(x,y + ry)− κ̂f,g(x,y)|,

δ3 := |κ̂f,g(x,y)− κf,g(x,y)|,
δ4 := |κf,g(x,y)− κf,g(x+ rx,y + ry)|.

First, we observe that, thanks to E1:

δ1 = 1
m

∣∣∣
∑m

j=1

[
f(ω>j (x+ rx) + ξj)− f(ω>j x+ ξj)

]
g∗(ω>j y

′ + ξj)
∣∣∣

6 ‖g‖∞ · 1
m

∑m
j=1

∣∣∣f(ω>j x+ ω>j rx + ξj)− f(ω>j x+ ξj)
∣∣∣ 6 ηLµfCΛ + ε1.
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Similarly, using E2, we get for δ2:

δ2 = 1
m

∣∣∣
∑m

j=1 f(ω>j x+ ξj)
[
g∗(ω>j y + ω>j ry + ξj)− g∗(ω>j y + ξj)

]∣∣∣ 6 ηLµgCΛ + ε2.

Regarding δ3, we directly get from E3:

δ3 6 supx,y∈Ση |κ̂f,g(x,y)− κf,g(x,y)| 6 ε3.

Finally, for δ4, denoting u := x−y, ru := rx−ry ∈ 2ηBd2 and using Lemma 1 (also recall that h = f ∗ ḡ
is Lipschitz continuous with Lh 6 min(Lµf , L

µ
g ) by Lemma 2), as well as the definition of CΛ in (4),

δ4 =
∣∣∣κ∆
f,g(u)− κ∆

f,g(u+ ru)
∣∣∣ =

∣∣Eω∼Λ h(ω>u)− h(ω>u+ ω>ru)
∣∣

6 Eω
∣∣h(ω>u)− h(ω>u+ ω>ru)

∣∣ 6 Eω Lh ·
∣∣ω>ru

∣∣ 6 LhCΛ‖ru‖2 6 2ηCΛ ·min(Lµf , L
µ
g ).

Putting everything back together, under E1, E2, and E3, for any x′,y′ ∈ Σ:

∣∣κ̂f,g(x′,y′)− κf,g(x′,y′)
∣∣ 6 ε1 + ε2 + ε3 + ηCΛ

(
Lµf + Lµg + 2 ·min(Lµf , L

µ
g )
)
. (22)

It remains to bound the failure probability for each event. For event E1, we have to bound the probability

P
[
Ē1

]
= P

[
∃x ∈ Ση s.t. 1

m

∑m
j=1H

f
j (η;x) > LµfηCΛ + ε1

]
.

We first focus on one single center x ∈ Ση. Each associated Hf
j (η;x) = supr∈ηBd2

|f(ω>j x+ω>j r+ ξj)−
f(ω>j x + ξj)| is a random variable identically and independently distributed (where the randomness is

due to the draw of ωj and ξj). The expectation EHf
j of those variables is bounded by (we use the mean

Lipschitz smoothness (19) with t = ξj , r = ω>j r and δ = |ω>j r|):

EHf
j = Eωj Eξj supr∈ηBd2

|f(ω>j x+ ω>j r + ξj)− f(ω>j x+ ξj)| 6 Lµf Eωj |ω>j r| = LµfηCΛ.

Now we describe how the sum 1
m

∑m
j=1H

f
j (η;x) concentrates around its mean EHf

j with Hoeffding’s

inequality (note that 0 6 Hf
j (η;x) 6 2‖f‖∞ 6 2), and use EHf

j 6 LµfηCΛ to get a probabilistic bound

P
[

1
m

∑
j H

f
j (η;x) > LµfηCΛ + ε1

]
6 P

[
1
m

∑
j H

f
j (η;x)− EHf

j > ε1

]
6 exp

(
−mε21

2

)
.

We take a union bound of this result over the Cη(Σ) = |Ση| centers x ∈ Ση to obtain

P
[
Ē1

]
6 Cη(Σ) exp

(
−mε21/2

)
= exp

(
Hη(Σ)−mε21/2

)
.

Moreover, if m > 4Hη(Σ)ε−2
1 , then we get P

[
Ē1

]
6 e−mε

2
1/4. An identical development for E2 yields

P
[
Ē2

]
6 e−mε

2
2/4 if m > 4Hη(Σ)ε−2

2 . For E3, an union bound of Prop. 4 on all pairs in Ση × Ση gives

P
[
Ē3

]
6 2
(Cη(Σ)

2

)
e−mε

2
3/2 6 Cη(Σ)2e−mε

2
3/2 = e2Hη(Σ)−mε23/2.

Moreover, if m > 8Hη(Σ)ε−2
3 , we get P

[
Ē3

]
6 e−mε

2
3/4. By union bound, and provided

m > 4Hη(Σ) ·max
(
ε−2
1 , ε−2

2 , 2ε−2
3

)
,

the probability of failure of the deterministic bound above is lower than

P
[
Ē1 ∪ Ē2 ∪ Ē3

]
6 P

[
Ē1

]
+ P

[
Ē2

]
+ P

[
Ē3

]
= e−mε

2
1/4 + e−mε

2
2/4 + e−mε

2
3/4.

Finally, the desired result (less generic but more meaningful) is found by imposing equal contributions
ε/4 by each error term in (22), i.e., ε1 = ε2 = ε3 = ε/4 and η = ε/(4CΛ[Lµf + Lµg + 2 min(Lµf , L

µ
g )]).

14



Prop. 5 shows that we can control (e.g., by increasing m) the kernel approximation error uniformly,
provided we control the smoothness of the “initial” kernel κ∆ = F−1Λ (through CΛ) and the mean
smoothness of the maps f and g. Improvements are possible, for example, by more carefully setting the
values of {ε1, ε2, ε3} and η. If Σ is structured (e.g., if it consists of sparse vectors or low-rank matrices)
and Λ is Gaussian, the value of CΛ in Eω |ω>r| 6 ηCΛ for r ∈ (Σ−Σ)∩ ηBd2 (which controls the bounds
on δ1, δ2 and δ4) can be related to the Gaussian mean width of Σ− Σ [38].

Example 3. Consider once again the case of a Gaussian kernel with unit bandwidth ( i.e., CΛ = 1),
with a signal space Σ made of bounded signals (inside the unit Euclidean ball Bd2) lying in a union of S
subspaces of Rd with dimension s. In this case, according to the entropy of this signal model (see Ex. 1),
the kernel approximation error |κ̂f,g(x,y)−κf,g(x,y)| is uniformly bounded over Σ, with high probability,
provided that the number of features satisfies m > C ε−2[s log

(
4
ε (L

µ
f +Lµg + 2 min(Lµf , L

µ
g ))
)

+ logS]. For

instance, for bounded s-sparse signals, we need m > C s · ε−2 log
(

4ed
csε (Lµf + Lµg + 2 min(Lµf , L

µ
g ))
)
.

We conclude this section by showing that Prop. 5 allows characterizing the proximity of two approx-
imated kernels κ̂f,g and κ̂f ′,g (given three functions f, f ′, g ∈ PF) when they are related by identical
expectations Eκ̂f,g = Eκ̂f ′,g = κ0. While this result could be achieved by a simple use of the triangular
inequality—from |κ̂f,g − κ̂f ′,g| 6 |κ̂f,g − κ0| + |κ̂f,g − κ0| and using the same proposition to bound the
last two terms—the following corollary provides a more direct bound, possibly tighter.

Corollary 1 (Proximity of approximated RPF kernels). Given ε > 0, a compact set Σ, two 2π-periodic
functions f, f ′ such that their difference f − f ′ ∈ PF, as well as a third periodic function g ∈ PF,
such that there exist finite mean smoothness constants Lµf−f ′ and Lµg , and Λ such that CΛ < ∞, if
κf,g(·, ·) = κf ′,g(·, ·) and if the feature dimension is larger than

m > 128 · 1
ε2
· Hε/c(Σ), (23)

with constant c = 4CΛ(Lµf−f ′ + Lµg + 2 min(Lµf−f ′ , L
µ
g )), then

∣∣κ̂f,g(x,y)− κ̂f ′,g(x,y)
∣∣ 6 ε, ∀x,y ∈ Σ, (24)

with probability exceeding 1− 3 exp(−mε2

64 ).

Proof. We simply observe that, by linearity of the kernels with respect to their supporting functions, for
any x,y ∈ Σ, κ̂f,g(x,y)− κ̂f ′,g(x,y) = κ̂f̃ ,g(x,y) with f̃ := f − f ′. The proof then follows by applying

Prop. 5 to the RPFs supported by f̃ , g ∈ PF, with the vanishing kernel E κ̂f̃ ,g(x,y) = κf,g(x,y) −
κf ′,g(x,y) = 0.

In Sec. 7.3, we will use this corollary in combination with Prop. 5 to compare the performance
of a machine learning algorithm (the kernel support vector machine, SVM) on a given classification
task when learning and inference are using identical approximated kernels (i.e., when the learning is
performed using the RFF) or only kernels that are asymptotically equal (when the learning stage uses
the expected kernel).

5 Asymmetric geometry-preserving embedding

Our approach can be related to the context of geometry-preserving embedding (or coding) developed
in [13]. This allows us to provide another version of one of their central results, [13, Thm 3.2], whose
proof is incorrect (as described below). While the alternative result we propose looks slightly different,
it fulfills the same goal: a non-asymptotic guarantee for the geometry-preserving capabilities of the
embedding (6) with discontinuous f , which holds on infinite signal sets. This section can be seen as a
first (theoretical) application of Prop. 5.
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5.1 Geometry-preserving embedding: the initial approach

In [13] the authors study when a mapping ϕ : Σ → Cm (such as zf defined in (6) for f ∈ PF) defines
an embedding of Σ into Cm approximately preserving the proximity of vectors in Σ. This proximity
is measured by the (local) preservation a distance associated with a `]-norm ‖ · ‖] (e.g., the `1 or the
`2-norm). Adapting their setting to our conventions1, given some ε, δ > 0, and an invertible function,
or distance map, γ : R+ → R+, they study the conditions ensuring that ϕ is a (γ, δ, ε)-embedding of Σ
(endowed with the `]-norm) into Cm; or mathematically, such that ϕ respects

(1− δ) γ(‖x− y‖])− ε 6 ‖ϕ(x)−ϕ(y)‖2 6 (1 + δ) γ(‖x− y‖]) + ε, (25)

for all x,y ∈ Σ.

In (25), γ maps distances in Σ to (squared) distances in Cm, and δ and ε quantify the multiplicative
and the additive error, respectively, of the embedding associated with the map γ. For instance, if ϕ is
linear with ϕ(x) = Ax, there exists many random constructions of the m×d matrix A with appropriate
scaling (e.g., random Gaussian matrix or random partial Fourier matrix [1]) for which (25) holds with
high probability with `] ≡ `2, ε = 0, and γ(t) = t2 for Σ = Σk and m = O(δ−2k log(n/k)). Similarly, in
the context of one-bit compressive sensing where ϕ(x) = (cm)−1/2 sign (Ax) (for some suitable c > 0),
‖ϕ(x) − ϕ(y)‖2 represents the (scaled) Hamming distance between the two binary vectors ϕ(x) and
ϕ(y), and (25) is verified with high probability over Σk ∩Bd with m = O(ε−2k log(n/k)), `] ≡ `2, δ = 0,
and γ(t) = t [39]. The work [13] extends this analysis to general nonlinear feature maps ϕ(·) = zf (·)
for some periodic function f (such as the universal quantizer q). In such a context, the authors show
that (25) holds with a map γ that often displays two regimes: a linear regime for small distances in Σ
(x ≈ y), and a saturation regime where γ quickly flattens after a certain distance.

As explained in [13, Sec. 4.5], this approach is connected to the approximation of a kernel κ : Σ×Σ→
R+ from the inner product of the images of two vectors, namely, for which 〈zf (x), zf (y)〉 ≈ κ(x,y).
Assuming ‖zf‖ = 1 for simplicity, which is the case for complex exponential and universal quantization
features, we find ‖zf (x)− zf (y)‖2 = 2 (1− 〈zf (x), zf (y)〉). Therefore, if zf is a (γ, 0, 2ε)-embedding of
Σ into Cm, then

κ(x,y)− ε 6 〈zf (x), zf (y)〉 6 κ(x,y) + ε, (26)

for all x,y ∈ Σ, provided we define the kernel

κ(x,y) := 1− 1
2γ(‖x− y‖]). (27)

The smoothness of κ is thus directly connected to the one of γ; for instance, if γ is Lipschitz continuous
with constant Lγ > 0 of R+, then, from the invertibility of γ over R+, κ is Lipschitz continuous with
constant Lγ/2 with respect to any of its argument. Note that, from Lemma 1 and Lemma 2, we also
know that if f is mean smooth with constant Lµf , then κ(x,y) = κ∆

f,f (x−y) is Lipschitz continuous with

constant Lκ 6 CΛL
µ
f with respect to any of its argument (as proved from the bound on δ4 in the proof

of Prop. 5). This shows that, despite their different origin, the smoothness of γ (in the approach [13])
and the one of f (in ours) control the one of κ.

Compared to our approach, [13] imposes the periodic function f to be “Lipschitz continuous by part”
(rather than being mean smooth), as defined hereafter in a setting adapted to our needs.

Definition 4 (T -part Lipschitz continuity [13, Def. 2.1]). A function f : Σ → C is T -part Lipschitz
continuous over S ⊂ Σ with constant L̄f > 0, if there exists a finite partition {St}Tt=1 of S into T disjoint

sets ( i.e.,
⋃T
t=1 St = S) such that

∀t ∈ [T ], ∀x,y ∈ St, |f(x)− f(y)| 6 L̄f · ‖x− y‖]. (28)

1Hereafter, departing from the general approach of [13], we always consider the simplified case where Cm is equipped
with the Euclidean distance, with a squaring of the corresponding distance in (25).
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Moreover, f is exactly T -part Lipschitz continuous over S with constant L̄f > 0, which we write f ∈
Lip(S, T, L̄f ), if it is T -part Lipschitz continuous with that constant but is not (T − 1)-part Lipschitz
continuous with the same constant.

Note that (28) both generalizes (18) to functions from Σ ⊂ Rd to C, and localizes (18) on S.

Following the convention of our paper, the authors of [13] then prove the following result. We
simplify it to the case δ = 0 and where each component of zf has at most T parts of continuity (despite
its randomness).

Theorem 1 (Adapted from [13, Thm 3.2]). Given 0 < ε < 1, an Lγ-Lipschitz continuous distance
map γ : R+ → R+, and a signal set Σ with finite covering number Cη(Σ) for any radius η > 0, let us
assume that, for any fixed pair of vectors x,y ∈ Σ, the mapping zf defined in (6) satisfies the embedding

relation (25) (for δ = 0) with probability exceeding 1− Ce−cmε2.

Let us suppose that there exists a constant L̄f > 0 such that, for any x ∈ Σ, integer t > 1, radius
η > 0, and given Sx(η) := {u ∈ Σ : ‖u− x‖] 6 η} (a neighborhood of x of radius η),

P
[
(zf (·))k ∈ Lip(Sx(η), T, L̄f )

]
6 pt(η), (29)

with pt independent of x, and pt(η) = 0 if t > T for some integer T > 0.

In this context, defining ρ(η, T ) :=
∑T

t=2 pt(η) log t and ν := 1
4(Lγ + L̄f )−1, provided that ε2 >

Cρ(2νε2, T ) and
m > Cε−2

(
Hνε2(Σ) + log T

)
, (30)

the mapping zf is a (γ, 0, 2ε)-embedding with probability exceeding 1− Ce−cε2m, i.e., zf respects

γ(‖x− y‖])− 2ε 6 ‖zf (x)− zf (y)‖2 6 γ(‖x− y‖]) + 2ε, ∀x,y ∈ Σ.

The statement of this theorem is an easy adaptation of [13, Thm 3.2] where we set δ = 0, w(ε, δ) = cε2,
c0 = cε, Tmax = T (so that PF = 0), and α = ε2 6 ε 6 1.

Note that the first assumption of this theorem (regarding the fact that (25) holds with high probability
for any fixed pair of signals) is proven in a separate result, namely [13, Thm 4.1]. This theorem is similar
to our Prop. 4 (up to an easy extension of this proposition to a finite set of pairs by union bound). Since
the flaw developed below is independent of that separate result, we abstract this specific assumption away
in this work. As explained in [13, App. E], the conditions of this theorem can thus be met for instance
in the case where f is the universal quantizer. One can then show that T = 2, and defining p2(η) := Dη,
with D > 0 function of d and Λ, is appropriate for the bound (29). Therefore, ρ(2νε2, T ) 6 2Dνε2 6 ε2/C
for an appropriate C > 0.

The statement of this theorem bears similarities with our Prop. 5 in the case where f = g; in essence,
keeping in mind the equivalence (26), up to a smaller covering radius scaling as ε2 < ε < 1 in (30), the
constraint (30) is similar to (20) if we consider that the T -part Lipschitz continuity of f replaces its
mean smoothness.

However, the proof of Theorem 1 in [13, App. B] is incorrect. Let us see why by sketching their
arguments in our system of notations and using `] = `2 for the sake of simplicity. Given η > 0, x ∈ Σ,
and t ∈ [T ], the authors first (implicitly) note that if the random variable Z(x) counts the number
of components of zf (·) that are exactly t-part Lipschitz over Sx(η2 ) with a given constant L̄f , then
EZ 6 mpt. Therefore, given c0 > 0 and invoking Hoeffding’s inequality, they can upper bound the
probability that Z(x) > mpt(1 + c0) > EZ(x) +mptc0 with

P[Z(x) > mpt(1 + c0)] 6 exp(−2c2
0m).
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From this bound (using a union bound over all t ∈ [T ]), they then determine that Sx(η2 ) is partitioned

in at most S := exp((1 + c0) ρ(η, T )m) cells with probability greater than 1− Te−2c20m. Each cell of this
partition of Sx(η2 ) has thus a diameter of at most η. Moreover, by definition, zf is guaranteed to be
Lipschitz continuous with constant L̄f over every such cell.

The author then consider the possibility to pick one point per such cell, called cell center, and to
gather them in a finite set of at most S elements. One can then repeat this construction for all vectors
x of a η

2 -covering Ση/2 of Σ, and collect, for each such vector, all cell centers of its related neighborhood
into a global set G of centers of at most S × C η

2
(Σ) elements. By definition, G is thus a η/2-covering of

Σ with the additional property that zf is L̄f -Lipschitz continuous over each cell.

The authors then leverage this local continuity as follows. Since, by hypothesis, the mapping zf
defined in (6) satisfies the embedding relation (25) (for δ = 0) with probability exceeding 1 − Ce−cmε2
over any fixed pair of vectors x,y ∈ Σ, they first expand this property over all pairs of vectors taken
in G × G. This is ensured with probability exceeding 1 − CS2C2

η/2(Σ)e−cmε
2
, by union bound, since

|G ×G| 6 S2C2
η/2(Σ). Next, they extend this property to all x,y ∈ Σ by continuity, exploiting the (local)

Lipschitz continuity of f over each cell.

The flaw, which happens in the first step above, is analogous to how we cannot show the wrong
statement P[‖g‖2 < 0] = 1/2 for a Gaussian vector g ∼ N d(0, 1) by assigning another vector u to g in
the correct equality P[〈u, g〉 < 0] = 1/2, valid for u fixed. Indeed, the vectors of G, the collection of all
cell centers, are built from the random mapping zf — each center must be taken in a cell whose frontiers
are controlled by the discontinuities of the components of zf . These vectors are thus dependent of both
Ω ∼ Λm and the dither ξ ∼ Um([0, 2π)), through their dependence in zf . Therefore, one cannot ensure
that the probability that (25) holds (with δ = 0) on two cell centers x = x(Ω, ξ),y = y(Ω, ξ) exceeds
1−Ce−cmε2 , since that probability is itself taken over Ω, ξ. This flaw breaks the proof of [13, Thm 3.2].

5.2 An alternative geometry-preserving embedding

One can use Prop. 5 to get a variant of Thm 1 relying on the equivalence between (25) and (26).
This variant achieves the same high-level goal (i.e., a non-asymptotic guarantee on the approximation
error achieved by the embedding zf that holds infinite signal sets even for discontinuous f), but the
assumptions it relies on differ in two aspects. First, the smoothness of the distance map γ is not
anymore characterized by its Lipschitz smoothness directly, but by the constant CΛ, defined by the
sampling scheme Λ driving the random projections Ω. Second, we use the mean Lipschitz property
instead of the T -part Lipschitz property as notion of “generalized smoothness” for the map f . It is not
clear if this change is fundamentally necessary to be able to prove a variant of Thm 1, but we leave an
investigation of this issue for future work (the universal quantization q satisfies both properties anyway).

In fact, the following corollary shows that one can define novel asymmetric embeddings from Σ into
Cm; we can map two vectors of Σ with different random feature mappings zf and zg achieved with
distinct periodic functions f and g, respectively, and still show that, under certain conditions on f , g,
and the frequency distribution Λ, ‖zf (x) − zg(y)‖2 approximates a distortion of the distance between
any x,y ∈ Σ provided m is large compared to the complexity of Σ. Then, setting f = g provides a
specific embedding of Σ into Cm, in the sense described by [13].

Corollary 2 (Asymmetric geometry-preserving embedding). Let Σ be a compact set with finite covering
number, f, g ∈ PF be two real 2π-periodic functions and finite mean smoothness constants Lµf > 0 and

Lµg > 0, respectively. We assume that the frequency distribution Λ is such that CΛ < ∞, and there
exists a real, one-dimensional p.d. kernel κ∆

0 : R+ → [0, 1] such that [F−1Λ](u) = κ∆
0 (‖u‖]) for some

norm ‖ · ‖].
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For all error level ε > 0, provided the feature dimension is larger than

m > 128 · 1
ε2
· Hε/c(Σ), (31)

with constant c = 4CΛ(Lµf + Lµg + 2 min(Lµf , L
µ
g )), we have, with probability exceeding 1− 9 exp(−mε2

64 ),

γf,g(‖x− y‖])− 4ε 6 ‖zf (x)− zg(y)‖2 6 γf,g(‖x− y‖]) + 4ε, ∀x,y ∈ Σ, (32)

according to the distance map γf,g defined by

γf,g : s ∈ R+ → γf,g(s) = ‖f‖2 + ‖g‖2 − 2
∑

k∈Z FkG
∗
k κ

∆
0 (|k|s) ∈ R+.

Therefore, if f = g and if γf,f is invertible, zf is a (γf,f , 0, 4ε)-embedding of Σ (equipped with the norm
‖ · ‖]) into Cm, with γf,f (0) = 0 and γf,f (s) ∈ [0, 2].

Proof. Under the hypothesis of this corollary and remembering that κ̂f,g(x,y) = 〈zf (x), zg(y)〉, Prop. 5
tells us that the event

|κ̂f,g(x,y)− κf,g(x,y)| 6 ε, ∀x,y ∈ Σ,

holds with probability exceeding 1 − 3 exp(−mε2

64 ). Similarly, with the same probability, |κ̂f,f (x,y) −
κf,f (x,y)| 6 ε and |κ̂g,g(x,y)− κg,g(x,y)| 6 ε, for all x,y ∈ Σ. Therefore, by union bound, these three

events jointly hold with probability larger than 1− 9 exp(−mε2

64 ).

Conditionally to this combined occurrence, since κf,f (x,x) = κ∆
f,f (0) = ‖f‖2 and κg,g(y,y) =

κ∆
g,g(0) = ‖g‖2, we find

∣∣〈zf (x), zf (x)〉 − ‖f‖2
∣∣ 6 ε,

∣∣〈zg(y), zg(y)〉 − ‖g‖2
∣∣ 6 ε,

and
‖zf (x)− zg(y)‖2 6 ‖f‖2 + ‖g‖2 − 2κf,g(x,y) + 4ε = ‖f‖2 + ‖g‖2 − 2κ∆

f,g(x− y) + 4ε.

Moreover, from Prop. 3, since κ∆
f,g(u) =

∑
k∈Z FkG

∗
k κ

∆(ku) with κ∆(u) = (F−1Λ)(u) = κ∆
0 (‖u‖]) and

u ∈ Rd, the definition of γf,g provides

γf,g(‖u‖]) = ‖f‖2 + ‖g‖2 − 2κ∆
f,g(u),

which proves the upper bound of (32), the lower bound being established similarly.

Since f, g, κ∆
0 ∈ R,

∑
k FkG

∗
kβk ∈ R for any real coefficients βk, we show easily that γf,g ∈ R with

γf,g(0) = ‖f‖2 +‖g‖2−2〈f, g〉 > ‖f‖2 +‖g‖2−2‖f‖ ‖g‖ > 0. Moreover, if f = g, we get γf,f (0) = 0 since
κ∆

0 (0) = 0, and γf,f (s) ∈ [0, 2] since 0 6 κ∆
0 (s) 6 1 for all s > 0 and

∑
k∈Z |Fk|2κ∆

0 (|k|s) 6 ‖f‖2.

In this corollary, the existence of a norm ‖ · ‖] controlling the behavior of F−1Λ is ensured, for
instance, if Λ is a centered Gaussian distribution, in which case the `]-norm is the `2-norm. If Λ is the
Cartesian product of d Cauchy distributions in Rd (with zero location parameter and scale parameter
τ > 0), i.e.,

Λ(ω) = 1
πdτd

∏d
k=1

τ2

ω2
k+τ2 , (33)

then F−1Λ amounts to the Laplace distribution and ‖ · ‖] = ‖ · ‖1 [13, Sec. 4.2.2.]. Moreover, if
Λ is set to any α-stable distribution with α > 1, i.e., a distribution with characteristic function
(F−1Λ)(x) ∝ exp(−c‖x‖αα) with the Gaussian and the Cauchy distributions as special cases, we can
reach an (asymmetric) embedding associated with the norm ‖ · ‖α [40].

Regarding the distance map γf,g, we observe that it does not necessarily vanish at the origin, when
x = y in (32). As soon as f 6= g, a bias exists since

γf,g(0) = ‖f‖2 + ‖g‖2 − 2
∑

k∈Z FkG
∗
k = ‖f‖2 + ‖g‖2 − 2〈f, g〉 = ‖f − g‖2, (34)
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using κ∆
0 (0) =

∫
Rd Λ(ω)dω = 1. For instance, if f = q (with q the universal quantizer defined in (8)), and

g(·) = cos(·), γq,cos(s) = 3
2 − 2<(F1)κ∆

0 (s) = 3
2 − 4

πκ
∆
0 (s) since ‖f‖2 = 1, ‖g‖2 = 1/2, 2Gk = δk,1 + δk,−1,

and F1 = F−1 = 2
π from (8). Therefore, if Λ is a Gaussian distribution with unit standard deviation,

‖zf (x)− zg(y)‖2 ≈ γq,cos(‖x− y‖) = 3
2 − 4

π exp(−1
2‖x− y‖2).

Compared to the case f(·) = g(·) = cos(·) where

γcos,cos(‖x− y‖) = 1− exp(−1
2‖x− y‖2),

and γcos,cos(0) = 0, we thus observe a systematic bias γq,cos(0) = 3
2 − 4

π ≈ 0.2268 at the origin.

This non-vanishing bias2 in the case f 6= g is not a drawback per se, since γf,g can still be invertible.
For γq,cos and a Gaussian Λ with unit variance, we find

γ−1
q,cos(s

′) =
(
− 2 ln(3π

8 − π
4 s
′)
)1/2

, with s′ ∈ [3
2 − 4

π ,
3
2 ].

This shows that, if ε is small enough, we can still reliably infer the distance between x and y from
‖zf (x)− zg(y)‖ provided that x ≈ y. Indeed, estimating γ−1

q,cos(‖zf (x)− zg(y)‖2) ≈ ‖x− y‖ leads to a
first order error [13] proportional to

(
d
dsγq,cos(s)

)−1
ε = 4

πs ε exp( s
2

2 ),

for s = ‖x− y‖. As expected from the local nature of the embedding, this error quickly explodes when
s is large.

Remark. When f = g, γ(s) = 2‖f‖2−2
∑

k |Fk|2κ∆
0 (|k|s) is invertible iff

∑
k |Fk|2κ∆

0 (|k|s) is invertible.
This occurs, for instance, if the one-dimensional kernel κ∆

0 is differentiable with d
dsκ

∆
0 (s) < 0 for all

s > 0, which is the case of any symmetric α-stable distribution Λ for which (F−1Λ)(x) ∝ exp(−c‖x‖αα).
In this case, we easily verify that d

dsγ(s) > 0 for s > 0, and γ is monotonically increasing when s
increases, starting from γ(0) = 0. This ensures the injectivity of γ.

6 Semi-quantized random Fourier features

In this section, we explore one practical application of our general results from Sec. 4 by instantiating
them on the semi-quantized scenario motivated in the Introduction (see Fig. 1). More precisely, we
consider the asymmetric RPF setting κ̂f,g(x,y) = 〈zf (x), zg(y)〉 in the particular case where: (i) one
of the signals x is available through its one-bit universal features zq(x) ∈ {− 1√

m
,+ 1√

m
}m (that is, the

first periodic map f is the square wave q, alternating between ±1 with period 2π, see Fig. 2); (ii) the
other signal y is available through its classical (full-precision) random Fourier features zcos(y) (that is,
the second map g is a cosine).

Concretely, we start by highlighting a striking general result: when the classical RFF (i.e., for which
g(·) = exp(i·) or cos(·)) are combined with any mean smooth function f ∈ PF, then the asymmetric
inner product κ̂f,g(x,y) exactly recovers the initial kernel κ that would be approached by symmetric
usual RFF κ̂g,g(x,y). Then, to combine this fact with the binary square wave f = q, we prove that q
is mean smooth (Def. 3). This finally allows us to obtain a probabilistic uniform bound on the kernel
approximation error for the semi-quantized scenario pair, demonstrating in the process how to deal with
the scaling issues that appear in such schemes by using the normalization (13).

2This bias is here demonstrated when the feature space Cm is equipped with the squared `2-distance; the question of its
existence for other metrics, such as the `1-distance, remains open.

20



Expected kernel with a single-frequency nonlinearity: Let us begin by noting an interesting
consequence of Prop. 3. From RPF zf (x) captured on x with any nonlinearity f ∈ PF whose fun-
damental period is exactly 2π, one can recover in expectation, for a given vector y, the evaluation the
shift-invariant kernel κ(x,y) = κ∆(x−y) associated with the sampling of the projections ωj ∼ Λ = Fκ∆.

Indeed, using Prop. 3 in the complex field, and setting g(·) = exp(i·) for the RPF of y—which in this
case is the RFF (Def. 1)—ensures that κf,exp(i·)(x,y) = F1κ(x,y). Intuitively, the dithering averages
out all the high-frequency components in f , leaving only its fundamental frequency. When dealing with
real-valued quantities κ, f ∈ R, we can use the real RFF (where g(·) = < exp(i·) = cos(·)) instead, and
using the normalized kernel (13) with (11) gives

κ̇f,cos(x,y) = 1
<F1

κf,cos(x,y) = 1
<F1

E〈f(Ω>x+ ξ), cos(Ω>y + ξ)〉 = κ(x,y), (35)

since 〈f, g〉 =
∑

k FkG
∗
k = <F1. We thus recover, through κ̇f,cos the initial kernel κ, thanks to a rescaling

by 1/〈f, g〉 = 1/<{F1} which must be taken into account for a fair comparison.

Remark. In theory, we can thus recover, from zf (x), the kernel κ at many different scales by “probing”
it with zcos(k ·)(y) for any scale k such that Fk 6= 0. However, we observe in practice that the kernel
approximation error quickly increases with k. This can be understood in the light of Prop. 5, since one
easily show that Lcos(k ·) = |k| and3 2

π |k| 6 Lµcos(k ·) 6 |k|. Moreover, if ‖f‖2 =
∑

k |Fk|2 is bounded, each

rescaling factor (<{Fk})−1 grows as k increases; for instance, (<{Fk})−1 ∝ |k| for f = q.

The asymmetric scheme in (35) is interesting because it allows the same level of control over the
approximated kernel as the usual RFF (which is an improvement compared to the scale mixture of
RFF kernels imposed by Prop. 2) while still enjoying the freedom to use any type of features zf (x) for
one of the signals being compared—a particularly appealing choice being f = q, the one-bit universal
quantization. However, in order to use Prop. 5 to obtain uniform error bounds, we still need to prove
the mean Lipschitz smoothness of this (discontinuous) map.

Mean Lipschitz smoothness of universal quantization: We now show that the one-bit universal
quantization function q (i.e., the square wave) has the mean Lipschitz property—although it is discon-
tinuous. The same strategy could be used to prove the mean Lipschitz smoothness of any function in
PF with a finite number of discontinuities per period.

Proposition 6. The one-bit universal quantization function q, defined in (8), has the mean Lipschitz
smoothness property (Def. 3) with constant

Lµq = 4
π‖q‖∞ = 4

π . (36)

Proof. By definition of the mean smoothness property, we must find Lµq such that

1
2π

∫ 2π
0 maxr∈[−δ,δ]{|q(t+ r)− q(t)|} dt 6 Lµq · δ.

We start by characterizing the integrand Iδ(t) := max|r|6δ{|q(t+ r)− q(t)|} . Since q(t) is constant (in
particular, q(t) = ±‖q‖∞) everywhere except on discontinuities at t ∈ π

2 + πZ where its height changes
by an absolute step of 2‖q‖∞, we have for k ∈ Z that (see Fig. 2)

Iδ(t) =

{
0 π

2 + kπ + δ < t < π
2 + (k + 1)π − δ

2‖q‖∞ π
2 + kπ − δ 6 t 6 π

2 + kπ + δ.

Integrating this over one period gives
∫ 2π

0 Iδ(t)dt = min(4δ, 2π)·2‖q‖∞ 6 8‖q‖∞ ·δ, i.e., Lµq = 4
π‖q‖∞.

3First, Lµcos(k·) 6 Lµexp(ik·) = |k| since |cos(α)−cos(β)| 6 |eiα−eiβ | for all α, β ∈ R. Second, from |cos(k(t+r))−cos(kt)| =
2|sin(k(t+ r

2
)) sin kr

2
| for all t, r ∈ R, we get, by fixing r = δ in (19), Lµf > supδ>0

2
δ
|sin kδ

2
|Et∼U([0,2π])|sin(k(t+ δ

2
))| = 2

π
|k|.
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Combining quantized and cosine features: We are interested in approximating a specific kernel
κ(x,y) by the asymmetric features product 〈zq(x), zcos(y)〉. This product gives on average κq,cos = 2

πκ

(recall from (8) that Qk = 2
kπ (−1)(k−1)/2 for k odd and 0 otherwise), and the re-scaled approxima-

tion κ̃q,cos defined in (13) in this case is given by

κ̃q,cos(x,y) := π
2 · κ̂q,cos(x,y) = π

2 〈zq(x), zcos(y)〉 ≈ κ(x,y). (37)

We bound the error of approximating the kernel over an infinite compact set Σ thanks to Prop. 5.

Corollary 3 (Uniform kernel approximation error from quantized-complex asymmetric features). Given
ε > 0, a compact set Σ, and the frequency distribution Λ such that CΛ <∞, provided that

m > 32π2 · 1
ε2
· Hε/((8+6π)CΛ)(Σ), (38)

the following kernel approximation bound holds uniformly:
∣∣κ̃q,cos(x,y)− κ(x,y)

∣∣ 6 ε, ∀x,y ∈ Σ, (39)

with probability exceeding 1− 3 exp(− mε2

16π2 )

Proof. Apply Prop. 5 with f = q, g = cos, using that Lµq = 4
π (from Prop. 6) and Lµcos = 1: for any given

ε′ > 0, if m > 128 · 1
ε′2 · Hε′/c(Σ) with c = (12 + 16

π )CΛ,

P
[
∃x,y ∈ Σ :

∣∣κ̂q,cos(x,y)− 2
πκ(x,y)

∣∣ > ε′
]
6 3 exp

(
−mε′2

64

)
.

To take into account the scaling of the kernel, set ε = ε′

<Q1
= π

2 ε
′.

Example 4. Consider a final time our example of a union of S s-dimensional subspaces (see Ex. 1)
combined with the Gaussian kernel with unit bandwidth (and CΛ = 1). In this case, the kernel approxi-
mation error |κ̃q,cos(x,y)−κ(x,y)| is uniformly bounded over Σ, with high probability, provided that the

number of features satisfies m > Cε−2(s log(8+6π
ε ) + logS), which reduces to m > Cε−2s log( (8+6π)ed

sε )
for bounded s-sparse signals.

Corollary 3 provides a theoretical guarantee justifying the semi-quantized scheme presented in the
Introduction. In the next section, we further validate this approach from numerical simulations.

7 Experiments

In all our experiments, we are interested in approximating a kernel κ(x,y), associated with the RFF
sampled with Λm, by the inner product of random periodic features. We focus on (combinations of) the
two types of features discussed in the previous section: the “real” random Fourier features zcos(x) =

1√
m

cos(Ω>x + ξ) ∈ Rm, and the universal features zq(x) = 1√
m
q(Ω>x + ξ) ∈ {− 1√

m
,+ 1√

m
}m, where

m is the number of features (or dimension), and where we generate Ω ∼ Λm and ξ ∼ Um([0, 2π)).
Recalling the rescaling (13) for fair comparisons of the approximated kernels with κ, we thus consider
three possible combinations: the classical (real) random Fourier features (with ‖f‖2 = ‖ cos(·)‖2 = 1

2),

κ̃cos,cos(x,y) = 2〈zcos(x), zcos(y)〉 ≈ κ(x,y),

our asymmetric “semi-quantized” scheme (with 〈f, g〉 = 2/π),

κ̃q,cos(x,y) = π
2 〈zq(x), zcos(y)〉 ≈ κ(x,y),

and the fully quantized inner product from [7] (with ‖q‖2 =
∑

k |Qk|2 = 1),

κ̃q,q(x,y) = 〈zq(x), zq(y)〉 ≈ κq,q(x,y) =
∑

k∈Z |Qk|2κ(kx, ky) 6= κ(x,y).
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7.1 Qualitative analysis of the expected kernel

As a first experiment, we visually demonstrate that our asymmetric product κ̃q,cos indeed approaches

a target kernel κ. As target, we use the Gaussian kernel κ(x,y) = exp(−‖x−y‖
2
2

2σ2 ) (for which Λ is the

Gaussian distribution N (0, σ−2Id)), as well as the Laplace kernel κ(x,y) = exp(−‖x−y‖1τ ) (where Λ is
the Cauchy distribution (33)), both in dimension d = 5.

We evaluate the three inner products κ̃cos,cos, κ̃q,cos and κ̃q,q on n = 2000 pairs of vectors {(xi,yi)}ni=1,
that are generated as follows. We first sample xi ∈ R5 according to a standard normal distribution, then
pick yi = xi + λiui, where ui is a randomly chosen unit vector (i.e., normalized such that ‖ui‖p = 1

with p = 2 for the Gaussian kernel and p = 1 for the Laplace one), and λi = (i−1)λmax

(n−1) is a controlled
distance which is incremented for each pair, linearly increasing from 0 to λmax = 5. This ensures that
we test the kernel approximations uniformly in the desired range of distances ‖x− y‖p.

We then generate one realization of Ω, ξ (with m = 200 for the Gaussian kernel, and m = 2000
for the Laplace kernel, values which were arbitrarily chosen to get pleasing visualizations), which we
use to compute the real RFF

{(
zcos(xi), zcos(yi)

)}n
i=1

as well as the universal quantization features{(
zq(xi), zq(yi)

)}n
i=1

, from which we get n evaluations of the classical RFF inner product κ̃cos,cos(xi,yi) =
2〈zcos(xi), zcos(yi)〉, the asymmetric product κ̃q,cos(xi,yi) = π

2 〈zq(xi), zcos(yi)〉, and the fully quantized
product κ̃q,q(xi,yi) = 〈zq(xi), zq(yi)〉.

Those evaluations are shown as black dots in Fig. 3 for the Gaussian and Laplace kernels in the
top and bottom rows, respectively. As predicted by the theory, both the RFF product κ̃cos,cos and our
semi-quantized product κ̃q,cos concentrate around the target kernel κ (in red). As expected from [13], in
the fully quantized case the product κ̃q,q rather concentrates around a different “distorted” kernel, κq,q.
Note that we increased the feature space dimension m tenfold for the Cauchy kernel, which reduced the
variance of the approximation. However, it is difficult to notice a substantial difference of approximation
quality between the plain RFF κ̃cos,cos and the semi-quantized asymmetric scheme κ̃q,cos. We thus
perform a more quantitative exploration of the error |κ̃q,cos − κ| in the next experiment.

7.2 Quantitative analysis of the approximation error

To perform a more quantitative analysis of the kernel approximation from Cor. 3, we perform another
set of experiments that highlight the evolution of the worst-case error (associated with the hybrid esti-
mation (37)),

εq,cos(Σ) := supx,y∈Σ |κ̃q,cos(x,y)− κ(x,y)|,
as a function of m. In this synthetic experiment, we work with a finite set of signals Σ = {xi ∈ Rd}ni=1

obtained from a Gaussian distribution xi ∼i.i.d. N (0, σ̃2Id) in with σ̃ = 10. We target a Gaussian
kernel κ of bandwidth σ = 0.25, and evaluate the absolute approximation error εq,cos(Σ) over all vector
pairs of Σ. We record the largest error encountered this way, and repeat this process for several feature
dimensions m.

First, we let n = |Σ|, the number of signals, vary between 10 and 500 (by sampling 21 equally-spaced
values for log10(n)), and generate a new dataset in dimension d = 32 each time. For each value of m
(varying uniformly between 100 and 1300), we repeat 50 independent draws of Ω and ξ and report Fig. 4a
the number of times that εq,cos(Σ) 6 ε̄ for a fixed threshold ε̄ = 0.15 (i.e., we report the empirical “success
rate” of the embedding). As expected, the feature space dimension m needed to succeed (highlighted
in red for 50% success rate) scales as O(log n). We also show in dashed yellow the same transition for
the worst-case error εcos,cos(Σ) (evaluating |κ̃cos,cos − κ| over all vector pairs of Σ) committed by the
plain RFF, which shows the price to pay for quantization. Roughly speaking, the same success rate is
achieved for κ̃q,cos(xi,xj) as for κ̃cos,cos(xi,xj) provided we take ∼ 33% more random features, which
still corresponds to a bitrate reduction for the features of the fist signal xi. Finally, for the sake of
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Figure 3: Comparison between the target kernel κ(x,y) (red curves), and the approximations (the black scatter plots
each evaluated over n = 200 pairs {(xi,yi)}ni=1) using, for (a,d), the plain random Fourier features κ̃cos,cos(xi,yi) =
2〈zcos(xi),zcos(yi)〉, for (b,e), our asymmetric cosine-quantized pair κ̃q,cos(xi,yi) = π

2
〈zq(xi),zcos(yi)〉, and for (c,f), only

quantized features κ̃q,q(xi,yi) = 〈zq(xi),zq(yi)〉. In the last case, the “distorted” expected kernel E κ̃q,q = κq,q is shown

in blue. For (a-c; top row), the comparison is made for the target Gaussian kernel κ(x,y) = exp(− ‖x−y‖22
2σ2 ) with scale

σ = 1.5, and the approximated kernels use m = 200 random features evaluated. For (d-f; bottom row), the target kernel is

the Laplace kernel κ(x,y) = exp(− ‖x−y‖1
τ

) with scale τ = 1.5, and its different approximations are set with m = 2000.

comparison we also show in blue the same success rate but when measuring the proximity error between
the two approximations (semi-quantized and usual RFF), i.e., |κ̃q,cos − κcos,cos|, which relates to our
bound in Cor. 1.

Second, we fix one single dataset Σ of n = 200 signals in R5, but record the precise value of the
worst-case error ε := εq,cos(Σ) for each of the 50 draw of Ω, ξ at different values of m (this time varying
along a logarithmic scale). We display the various errors ε obtained as box-plots in Fig. 4b. As can be
seen by comparison with the −1/2 slope in red, the error is controlled with high probability (discarding
the outliers from the box-plots) provided that m = O(ε−2), as expected from Prop. 5.

7.3 Application: semi-quantized support vector machines

As a last experiment, we demonstrate how the asymmetric features can be used in practice, for the
particular case of Support Vector Machine classification [8, 9], where the goal is to assign a class label
y′ ∈ Z to new query vectors x′ ∈ Σ from labeled training data T := {(xi, yi)}ni=1. In the binary
classification case (labels yi ∈ {±1}), given a kernel κ] : Σ × Σ → R, the learned SVM classifier θ
predicts the class of an incoming vector x′ as

θ(x′) = sign
(∑

i∈S∗ αiyi κ
](x′,xi) + b

)
, (40)

where S∗ ⊂ [n] is the index set of support vectors xi, 0 < αi 6 R are the related weights, and b is a bias
(or “intercept”) term. The quantities {S∗, αi, b} are the parameters to be learned during the training
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Figure 4: (a) Empirical success rate (from 100% success in white to 0% in black) of the kernel approximation (defining
success as εq,cos(Σ) < ε̄ = 0.15), as a function of m (log scale) for varying dataset size n = |Σ|. The transition to 50% success
or more is highlighted in solid red; the same curve is shown for the success rate of the classical RFF (when εcos,cos(Σ) < ε̄) in
dashed yellow. The blue line represents the success rate related to the proximity between those two kernel approximations,
i.e., when supx,y∈Σ |κq,cos(x,y)− κcos,cos(x,y)| < ε̄. (b) Largest kernel approximation error ε := εq,cos(Σ) as a function of
m for 50 draws of Ω and ξ (the blue box-plots). The dashed red line shows the slope log10(ε) ∼ − 1

2
log10(m), for reference.

stage, while the kernel κ] and regularization strength R > 0 (where a smaller R corresponds to more
regularization) are hyper-parameters to be set beforehand. In the multi-class case (where yi ∈ [N ] for N
classes), we use the “one-versus-rest4” strategy where one binary classifier is trained to recognize each
class.

In this experiment, given a simple classification task described below, we propose to train the SVM
with a given kernel κ]L, and to test the classification of new samples with another kernel κ]T that ap-

proximates κ]L, hence assessing how the classifier θ is impacted by this modification. We consider two

options. In the first we train a kernel SVM on the raw data T with a “true” kernel κ]L = κ and use the

approximated kernels provided by random periodic features (setting κ]T to the kernels κ̃cos,cos, κ̃q,cos and
κ̃q,q defined from (13)) only at the inference stage. In this mode, which is the viewpoint we adopted in
most of this work (e.g., in Prop. 5), we thus interpret the RPF inner products as a means to approximate
as well as possible the given kernel κ.

In a second case, we directly train a linear SVM on the cosine random Fourier features of the training
set T ′ := {(zcos(xi), yi)}ni=1, which amounts to using κ]L = κ̃cos,cos in (40) as the reference kernel during

training. At the testing stage, we still set κ]T to κ̃cos,cos, κ̃q,cos and κ̃q,q. In this scenario, the random
periodic features are rather (implicitly) used to define a specific kernel κ̃cos,cos that generalizes as well
as possible without caring about the approximation κ̃cos,cos ≈ κ; this view is more faithful to recent
research on the generalization capabilities of learning from RFF [14, 41–43]. Our other RPF products

used at the test (κ̃q,cos and κ̃q,q) are then to be understood as approximations to κ]L = κ̃cos,cos rather
than to the original κ, as explained in Cor. 1, and as measured by the blue curve in Fig. 4a.

Synthetic data

Specifically, for both contexts, we generate a synthetic dataset of 10 000 samples in R2 by generating
a mixture of 4 Gaussians for each of the N = 5 different classes, separated into n = 8000 training

4also known as “one-versus-all”.
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Table 1: Scenarios and color coding for Fig. 5.

Color RPF for Kernel at the test: κ]T(x′,xi)
Query vector x′ Support vectors {xi}i∈S∗

black zcos(x
′) zcos(xi) κ̃cos,cos(x

′,xi) = 2〈zcos(x
′), zcos(xi)〉 ≈ κ(x′,xi)

green zq(x
′) zcos(xi) κ̃q,cos(x

′,xi) = π
2 〈zq(x′), zcos(xi)〉 ≈ κ(x′,xi)

blue zcos(x
′) zq(xi) κ̃cos,q(x

′,xi) = π
2 〈zq(x′), zcos(xi)〉 ≈ κ(x′,xi)

red zq(x
′) zq(xi) κ̃q,q(x

′,xi) = 〈zq(x′), zcos(xi)〉
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Figure 5: Left: Considered dataset (each arbitrary color corresponds to one of the 5 classes). Right: Test accuracy of an
SVM classifier learned with a Gaussian kernel on the raw training set T (top (a-b)) or on their cosine RFF (bottom (c-d)),
for regularization parameters R = 5 (weak regularization; left (a-c)) and R = 0.25 (strong regularization; right (b-d)), and
evaluated with several RPF combinations as a function of their dimension m. Classification performance is measured on the
test set according to the scenarios and curve colors described in Table 1. The curves are the median out of 25 independent
draws of Ω and ξ. The dashed line indicates the test accuracy of the exact SVM classifier (no random features are used).

and 2000 testing samples (see Fig. 5, left). Regarding the true kernel, we set it to a Gaussian kernel

κ(x,x′) = κ∆(x − x′) = exp(−‖x−x
′‖22

2σ2 ) with bandwidth σ = 2, and fixed the regularization R either
to 5.0 (mild regularization) or 0.25 (strong regularization). For various feature space dimensions m,
we generate the projections Ω ∼ Λm (with Λ = Fκ∆, see Sec. 2) and dithering ξ ∼ Um([0, 2π)), and
thus train (with Scikit-learn [44]) both an SVM classifier from the raw data with the Gaussian kernel,
and another linear SVM from the associated cosine random Fourier features. We then evaluate these
classifiers (in “inference mode”) on the separate test set, using the different random features inner
products and report the median accuracy (out of 25 draws) as a function of m in Fig. 5, right. In the
four plots of this figure, we use a specific color coding of the RPF for both the incoming query vector x′

and the learned SVM support vectors {xi}i∈S∗ , as summarized in Table 1 for convenience. Note that,
according to this table, the green and the blue curves are associated with the scenarios represented in the
Introduction in Fig. 1a and Fig. 1b, respectively, and the red curves relate to the (symmetric) quantized
approach of [3].

When approximating the “exact” SVM classifier (where κ]L = κ; top row in Fig. 5), a substantial
number of features is required to reach the same performances (m ≈ 300 to obtain accuracy > 97.5%).
As could be intuitively expected, the drop of accuracy is larger when more quantization of the features
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is being performed (the price to pay is particularly high when the support vectors are quantized, in blue
and red). This difference is probably related to the fact that the SVM decision function is relatively
sensitive to the position of the support vectors (in the feature space), because they directly lie on the
decision boundary. Notice also the importance of regularization: although changing R does not incur a
noticeable change on the exact SVM accuracy (the horizontal dashed lines), it appears in Fig. 5b that
stronger regularization improves the RPF-based classifiers.

When the SVM is directly trained on the random Fourier features (i.e., κ]L = κ̃cos,cos; bottom row
in Fig. 5) the accuracy of κ̃cos,cos(x

′,xi) (black) is strongly boosted (reaching 97.5% accuracy or higher
with less than m = 50 features). The role of regularization is here exacerbated: reducing R hurts the
performances of the plain RFF classifier, but is necessary to maintain good accuracy with the semi-
quantized schemes for a reasonable feature dimension m. It appears that proper regularization is needed
to account for the quantization noise.

Finally, note that in all cases, the fully quantized scheme (in red) is not much worse than our semi-
quantized solution with dataset quantization (the kernel mismatch shown Fig. 3c is apparently not too
harmful in this case), but still suffers from strictly more classification errors. Therefore, it can be re-
placed by one of the asymmetric schemes for a negligible cost, it should be done. However, because we
focus on approximating an imposed kernel without considerations for the underlying machine learning
model, we did not compare to the fully-quantized case where the quantized features are already used
during the training [3], i.e., where the distorted kernel κq,q = Eκ̃q,q is directly embraced to train the
SVM rather than being used as an approximation for κ.

Real data: remote classification of hyperspectral pixels

In a last experiment, to prove the concept of using semi-quantized features in a concrete and practical
setting, we consider the problem of hyperspectral pixel classification, i.e., determine the class of a spatial
pixel given its electromagnetic spectral response across d wavelengths. Kernel SVMs have been a quite
popular solution to this challenge: our approach in particular is inspired by [45, 46] as well as [47] for
the use of RFF, but many more references can be found in the extensive review [48].

To have a concrete and quantifiable measure of the computational gains allowed by the quantization
of RFF, we focus on the quantized query context (illustrated Fig. 1a). More precisely, we consider the
scenario of an aircraft (or satellite) equipped with a hyperspectral sensor that must send its readings x′

for remote classification of the pixels it observes. We assume this task is entrusted to a kernel SVM,
involving a weighted sum of κ]T(x′,xi) terms. Since the communication link between the satellite and
the remote server is presumably costly, it is important that the number of bits used to encode this query,
noted b, is as small as possible.

We compare three strategies. First, the baseline strategy is to send the “raw” measurements x′ ∈ Rd,
which requires b = Bd bits, where B designates the bit-depth of full-precision readings (we consider
B = 64 bits in our experiments). In this strategy, the kernel in the learning and testing stages is

the “true” Gaussian kernel, i.e., κ]L = κ]T = κ. Second, the usual RFF strategy is to send the full-
precision RFF zcos(x

′) ∈ Rm, which requires b = Bm bits. Following the observations from the previous

experiments, we both learn and test on the RFF kernel, i.e., κ]L = κ]T = κ̃cos,cos. Finally, the quantized
RFF query strategy is to send the quantized RFF zq(x

′) ∈ {− 1√
m
,+ 1√

m
}m, which takes up b = m bits5.

Although the kernel at test time is now the hybrid product κ]T = κ̃q,cos, we still learn using the usual

RFF kernel κ]L = κ̃cos,cos. Note that to simplify the comparison, we thus consider only a naive encoding
of the query, neglecting the use of e.g., entropy coding strategies.

5Strictly speaking, we would actually need to transmit 1
2
(
√
mzq(x

′) + 1) ∈ {0, 1}m and to remotely recover zq(x
′) from

this binary stream, assuming m is known to the receiver.
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(a) Indian Pines dataset.
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Figure 6: (a) Schematic representation of the Indian Pines hyperspectral volume, containing 10 249 labeled pixels xi ∈ Rd,
which feature d = 200 wavelengths. (b) Test accuracy as a function of the number of bits b to be transmitted to the remote
server, for each of the three considered strategies: the baseline strategy (red dot) sends the raw test vector x′; the RFF
strategy (solid black) sends the full-precision RFF zcos(x

′) of varying size m; and the quantized RFF strategy (solid green)
sends the one-bit equivalent zq(x

′). The curves are the median out of 30 independent draws of Ω and ξ.

We use the standard Indian Pines dataset [49], a hyperspectral volume which contains 10 249 labeled
pixels6, measured across d = 200 wavelengths7, separated into N = 16 classes (see Fig. 6a). We first
separated 20% of those pixels into testing set, which left n = 8204 pixels for training. In order to select
the hyper-parameters (kernel bandwidth σ and regularization strength R), following their sensitivity
observed in the previous experiment, we performed a separate cross-validation (with 5 folds from the
training set) for each of the three individual strategies. We then evaluated the test set accuracy reached
by each strategy, while letting m vary for the two RFF-based strategies, and report the results Fig. 6b.
In this figure, the baseline strategy is represented by the red dot, and the usual (resp. quantized) RFF
strategies are represented by the black (resp. green) solid curves, which are obtained by varying m.

The baseline (red) achieves the best accuracy overall, but at the price of a quite substantial bandwidth
usage. When using full-precision random features (black), the accuracy is only slightly reduced, but only
if a relatively large number of random features m is used, which does bring substantial bitrate reduction.
Indeed, to reduce the bandwidth b by, say, an order of magnitude, the full-precision RFF strategy must
sacrifice more than 10% accuracy, which is probably not acceptable in practice. On the other hand,
with the quantized query RFF strategy, we are able to achieve this same bitrate reduction by an order
of magnitude at the cost of only about 4%, which sounds more reasonable. Overall, (keeping in mind
that more involved compression methods could be applied to transmit the raw measurement x′ in our
scenario above, and hence still apply the first classification strategy after decompression) the quantized
RFF strategy performs better whenever the bitrate b is significantly smaller than the baseline bitrate,
hence showing the potential of the approach.

8 Conclusion

We introduced the framework of asymmetric random periodic features, where random projections are
passed through two different periodic maps, and whose inner products are used to approximate a kernel.

6The size of the full volume is 145 × 145 which gives 21025 pixels in total, but many of them are unlabeled, which we
discard for this experiment.

7The initial volume contains 220 wavelengths, but following the workflow commonly adopted with this dataset, we
removed the water absorption bands (i.e., the spectral indices [104-108], [150-163], and 220 from the initial dataset).
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We provided an expression of this kernel, with a uniform error bound holding on infinite compact
signal sets, provided the periodic maps satisfy a property we called the mean smoothness. The mean
smoothness holds for some discontinuous maps such as the one-bit universal quantization (a square wave).
As a first (theoretical) application of those developments, we generalized the local geometry-preserving
embeddings from [13], and corrected an error in their main result in the process. For a second more
practical application, we studied (theoretically and empirically) semi-quantized kernel approximations,
and showed how the impact of quantization can be controlled.

As highlighted by our last experiments, these theoretical guarantees do not necessarily ensure an
accurate control over the generalization performances in a machine learning context. Indeed, it seems
crucial to incorporate the random periodic features directly into the training stage, and to anticipate
that some features might be quantized later (for example, when picking the regularization strength). We
leave for future work the question of efficiently incorporating the asymmetric random periodic features
strategy during the training stage.

In the two applicative scenarii we proposed in the Introduction (Fig. 1), the ultimate objective is to
improve the bitrate-kernel accuracy trade-off. Allowing a finer (but still coarse) quantization of the RFF
(i.e., coding each entry on b > 1 bits instead of 1 as we proposed, for example with the b-bit universal
quantization [13]) is a promising idea to reach a better trade-off. Since the mean smoothness of these
finer quantization functions can also be verified, our results would carry over easily to this multi-bit
quantization of the RFF, but a detailed analysis of this approach is also left for future work. More
generally, the RPF with other periodic maps might also be worth studying. Finally, let us mention that
our results could be used to obtain formal guarantees in the context of compressive learning [20, 21],
where the dataset sketch (which pools the RPF of each dataset sample; see Sec. 1.1) and the algorithm
estimating the dataset distribution (such as CLOMPR [21]) relies on asymmetric periodic functions, e.g.,
the universal quantizer and the cosine function [22].
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Memory-Constrained Kernel Approximation. arXiv preprint arXiv:1811.00155, 2018.

[15] Nick Ryder, Zohar Karnin, and Edo Liberty. Asymmetric random projections. arXiv preprint
arXiv:1906.09489, 2019.

[16] Wei Dong, Moses Charikar, and Kai Li. Asymmetric distance estimation with sketches for similarity
search in high-dimensional spaces. In Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information retrieval, pages 123–130, 2008.

[17] Albert Gordo, Florent Perronnin, Yunchao Gong, and Svetlana Lazebnik. Asymmetric distances for
binary embeddings. IEEE transactions on pattern analysis and machine intelligence, 36(1):33–47,
2013.

[18] Xiaoyun Li and Ping Li. Random projections with asymmetric quantization. In Advances in Neural
Information Processing Systems, pages 10857–10866, 2019.

[19] Ping Li. Sign-full random projections. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 4205–4212, 2019.

[20] R. Gribonval, G. Blanchard, N. Keriven, and Y. Traonmilin. Compressive Statistical Learning with
Random Feature Moments. ArXiv e-prints, June 2017.

[21] Nicolas Keriven et al. Compressive K-means. In 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6369–6373. IEEE, 2017.

[22] Vincent Schellekens and Laurent Jacques. Quantized compressive K-means. IEEE Signal Processing
Letters, 25(8):1211–1215, 2018.

[23] AN Kolmogorov and VM Tihomirov. ε-entropy and ε-capacity of sets in functional space. Amer.
Math. Soc. Transl.(2), 17:277–364, 1961.

[24] Gilles Pisier. The volume of convex bodies and Banach space geometry, volume 94. Cambridge
University Press, 1999.

30



[25] Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin. A simple proof of the
restricted isometry property for random matrices. Constructive Approximation, 28(3):253–263, 2008.
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