Compressive k-Means with Differential Privacy

V. Schellekens¹, A. Chatalic², F. Houssiau³, Y.-A. de Montjoye³, L. Jacques¹ and R. Gribonval² (¹ UCLouvain / ² Univ Rennes, Inria, CNRS, IRISA / ³ Imperial College London)

Context: sketched learning

A framework to learn from **compressed datasets** [2], made of two steps: Sketching = compressing the whole dataset into a single vector of generalized random moments: $\mathbf{z} \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i} \text{ with } \mathbf{z}_{i} \triangleq f(\Omega^{T} \mathbf{x}_{i}) \xrightarrow{} \text{ pointwise nonlinearity (e.g. complex exponential } \text{ or quantization } \mathbf{u} \text{ or quantization } \text{ or quantization } \mathbf{u} \text{ or quantization$

► Learning = solving an inverse problem. For example for *compressive k-means*:

 $\mathcal{C}^* \in \arg\min_{\{\mathbf{c}_j\}_{j=1}^k} \| \mathbf{z} - \sum_{j=1}^k \alpha_j f(\Omega^T \mathbf{c}_j) \|_2.$

Privacy formalism: Differential Privacy (DP)

Question: how to protect sensitive datasets when learning?

An answer: Differential Privacy [1], random algorithm F has ϵ -DP if $\mathbb{P}\left[F(\mathcal{X}) \in S\right] \le \exp(\epsilon) \cdot \mathbb{P}\left[F(\mathcal{X}') \in S\right], \quad \forall S, \forall \mathcal{X} \sim \mathcal{X}', \quad (3)$ where ϵ is the privacy parameter ($\epsilon \downarrow$ means privacy \uparrow).

Learning tasks that can (currently) be solved with sketching: k-means clustering, GMM fitting, PCA.

Widely studied and accepted Strong, robust guarantee 🖒 Easy to implement

Very conservative Selection of privacy parameter ϵ ?

Contribution: private sketching for (e.g.) k-means clustering

Goal: leverage the information loss induced by sketching in formal privacy guarantees.

Idea: construct private sketch s_{χ} using two privacy-inducing elements:

- \blacktriangleright subsample individual sketches \mathbf{z}_i with binary masks \mathbf{b}_i (keeps r entries);
- add Laplacian noise $\boldsymbol{\xi} \sim \mathcal{L}(\frac{\sigma_{\xi}}{\sqrt{2}})$ on top of the average:

Main result

(4)

(2)

The noisy sketching mechanism (4) with r measurements per input sample and noise standard deviation $\sigma_{\xi} = \frac{2 c_f \sqrt{r m}}{\sqrt{n \epsilon}}$ achieves ε -differential

subsampled sketches

The noisy sketch $s_{\mathcal{X}}$ can be released publicly without harming the privacy of users in \mathcal{X} .

Privacy. (c_f depends on the non-linearity, e.g. $c_f = 2\sqrt{2}$ for the complex exponential.)

Experimental results: solving Compressive k-Means (CKM) on the private sketch s_{χ}

Problem: k-means clustering

Input: $\mathcal{X} = {\mathbf{x}_1, \dots, \mathbf{x}_n} \subset \mathbb{R}^d$ a set of n d-dimensional points. **Output:** k centroids $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_k\} \subset \mathbb{R}^d$ minimizing the sum of squared errors:

 $SSE(\mathcal{X}, \mathcal{C}) = \sum_{i=1}^{n} \min_{j} \|\mathbf{x}_{i} - \mathbf{c}_{j}\|^{2}.$

Note: We are learning p = kd parameters; In practice we need $m \approx kd$ to get good clustering results with compressive k-means [3].

Conclusions:

- ► A generic differentially private method, yielding privacy-utility tradeoffs similar to problem-specific techniques.
- Quantization does not degrade the results much.
- Subsampling reduces the time complexity without changing the tradeoff.

Privacy-utility tradeoff (k = d = 10, $n = 10^7$, synthetic data, medians/50 trials.)

Quantifying utility with the signal-to-noise ratio

Perspectives

- The bounds are actually tight (a bit trickier to show).
- ► Guarantees for PCA as well.
- Extension to other learning tasks.

References

- See [4] for full paper and proof.
- Cynthia Dwork. "Differential privacy: A survey of results". 2008.
- Rémi Gribonval et al. "Compressive statistical learning with random feature moments". 2017.
- Nicolas Keriven et al. "Compressive K-means". Mar. 5, 2017. [3]
- Vincent Schellekens et al. "Differentially Private Compressive k-Means". May 2019. [4]