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Context: sketched learning

A framework to learn from compressed datasets [2], made of two steps:
▶ Sketching = compressing the whole dataset into a single vector of generalized random moments:
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▶ Learning = solving an inverse problem. For example for compressive k-means:
C∗ ∈ arg min
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Convenient for distributed
data and data streams!

1. Sketching

Learning tasks that can (currently) be solved with sketching: k-means clustering, GMM fitting, PCA.

Privacy formalism: Differential Privacy (DP)

Question: how to protect sensitive datasets when learning?
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An answer: Differential Privacy [1], random algorithm 𝐹 has 𝜖−DP if
P [𝐹 (X ) ∈ 𝑆] ≤ exp(𝜖) ⋅ P [𝐹 (X ′) ∈ 𝑆] , ∀𝑆, ∀X ∼ X ′, (3)

where 𝜖 is the privacy parameter (𝜖 ↓ means privacy ↑).

 Widely studied and accepted
 Strong, robust guarantee
 Easy to implement

 Very conservative
 Selection of privacy

parameter 𝜖?

Contribution: private sketching for (e.g.) k-means clustering

Goal: leverage the information loss induced by
sketching in formal privacy guarantees.

Idea: construct private sketch 𝐬X using two privacy-inducing elements:
▶ subsample individual sketches 𝐳𝑖 with binary masks 𝐛𝑖 (keeps 𝑟 entries);
▶ add Laplacian noise 𝝃 ∼ L(𝜎𝜉√

2) on top of the average:
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The noisy sketch 𝐬X can be released publicly without harming the privacy of users in X .
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Main result
The noisy sketching mechanism (4) with 𝑟 measurements per input sam-
ple and noise standard deviation 𝜎𝜉 = 2 𝑐𝑓

√
𝑟 𝑚√

𝑛 𝜖 achieves 𝜺-differential
privacy. (𝑐𝑓 depends on the non-linearity, e.g. 𝑐𝑓 = 2

√
2 for the complex exponential.)

Experimental results: solving Compressive k-Means (CKM) on the private sketch 𝐬X

Problem: k-means clustering
Input: X = {𝐱1, ... , 𝐱𝑛} ⊂ R𝑑 a set of 𝑛 𝑑-dimensional points.
Output: 𝑘 centroids C = {𝐜1, ... , 𝐜𝑘} ⊂ R𝑑 minimizing the sum of
squared errors:

SSE(X , C) = ∑𝑛
𝑖=1 min𝑗‖𝐱𝑖 − 𝐜𝑗‖2.

Note: We are learning 𝑝 = 𝑘𝑑 parameters; In practice we need 𝑚 ≈ 𝑘𝑑
to get good clustering results with compressive k-means [3].

Conclusions:
▶ A generic differentially private method, yielding privacy-utility

tradeoffs similar to problem-specific techniques.
▶ Quantization does not degrade the results much.
▶ Subsampling reduces the time complexity without changing the

tradeoff.

Privacy-utility tradeoff (𝑘 = 𝑑 = 10, 𝑛 = 107, synthetic data, medians/50 trials.)
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Quantifying utility with the signal-to-noise ratio

SNR ≜ ‖𝐳‖2
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where 𝛼𝑟 ≜ 𝑟
𝑚

.

Perspectives

▶ The bounds are actually tight (a bit trickier to show).
▶ Guarantees for PCA as well.
▶ Extension to other learning tasks.
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