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Quantized Compressive K-Means
Vincent Schellekens∗ and Laurent Jacques∗

Abstract—The recent framework of compressive statistical
learning proposes to design tractable learning algorithms that use
only a heavily compressed representation—or sketch—of massive
datasets. Compressive K-Means (CKM) is such a method: it aims
at estimating the centroids of data clusters from pooled, non-
linear, random signatures of the learning examples. While this
approach significantly reduces computational time on very large
datasets, its digital implementation wastes acquisition resources
because the learning examples are compressed only after the
sensing stage. The present work generalizes the CKM sketching
procedure to a large class of periodic nonlinearities including
hardware-friendly implementations that compressively acquire
entire datasets. This idea is exemplified in a Quantized Compres-
sive K-Means procedure, a variant of CKM that leverages 1-bit
universal quantization (i.e., retaining the least significant bit of a
standard uniform quantizer) as the periodic sketch nonlinearity.
Trading for this resource-efficient signature (standard in most
acquisition schemes) has almost no impact on the clustering
performance, as illustrated by numerical experiments.

I. INTRODUCTION

Numerous scientific fields have recently experienced a
paradigm shift towards data-driven approaches where math-
ematical models are inferred from a dataset of learning exam-
ples X = {xi ∈ Rn}Ni=1. K-means clustering (KMC) [1] is
such a method widely used in, e.g., data compression, pattern
recognition, and bioinformatics [2], [3]. Given K, a prescribed
number of clusters (groups of similar data), KMC seeks the
centroids (or “cluster representatives”) C = {ck ∈ Rn}Kk=1

minimizing the Sum of Squared Errors (SSE):

C∗= arg min
C

SSE(C)= arg min
C

N∑
i=1

min
16k6K

‖xi − ck‖2. (1)

Solving (1) exactly is NP-hard [4], so in practice a tractable
heuristic such as the popular k-means algorithm [5], [6] is
widely used to find an approximate solution Ckm. However,
k-means complexity scales poorly with the size of modern
voluminous datasets where N is typically O(103 − 106), or
grows continually for data streams processing. In fact, since
k-means repeatedly requires—at each iteration—a thorough
pass over X , this massive dataset must be stored and read sev-
eral times, with prohibitive memory and time consumptions.
Paradoxically, the large dataset size (i.e., nN ) dwarfs, and does
not affect, the number of parameters learned by k-means
(i.e., nK). Ideally, larger datasets increase the model accuracy
without requiring more training computational resources.

This goal motivates the recent compressive learning frame-
work [7], where learning algorithms solely require access to a
drastically compressed representation of the dataset called the
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Fig. 1: a) A massive dataset X , composed of K clusters of examples xi ∈
Rn, is not explicitly available but acquired via one (or a cloud of) low-power
sensor(s) b) implementing random projections on frequencies Ω, a dithering
ξ and c) the 1-bit universal quantization q(·) (−1 is encoded as 0). Only d)
the sketch contributions of the examples (m bits) are acquired, and form after
averaging e) the sketch, a highly compressed but meaningful representation
of X . Our QCKM method then extracts f) the K cluster centroids from it.

sketch, a single vector zX ∈ Cm, constructed by collecting m
(empirical) generalized moments of the dataset X:

zX := 1
N

∑N
i=1 zxi where zxi :=

[
exp(−iωTj xi)

]m
j=1

, (2)

with “frequencies” ωj ∈ Rn sampled randomly according to
a distribution Λ. The sketch is thus the pooling (average) of
random projections of the data samples after passing through
a nonlinear, periodic signature—the complex exponential. The
Compressive K-Means (CKM) method [8] clusters X from zX
by replacing (1) with a sketch matching optimization problem:

(CCKM,αCKM) = arg min(C,α) ‖zX −
∑K
k=1 αkzck‖2, (3)

with the cluster weights αk > 0 satisfying
∑
k αk = 1. It was

shown empirically that SSE(CCKM) ' SSE(Ckm) provided m =
O(nK), i.e., the required sketch size m is only proportional
to the number of parameters to learn, allowing for tractable
memory consumption and training time whatever the number
of training examples N . It was also theoretically proven
that m = O(nK2) is a sufficient condition for retrieving
meaningful centroids from the sketch [7]. Interestingly, the
sketch is (up to a re-scaling) linear1 and zX can thus be
computed in one pass over the data, possibly realized in
parallel over several machines. This sketch is also easy to
update when new examples are available (e.g., in data streams).

The following limitation in CKMs sketching strategy mo-
tivate this work: all signals xi ∈ X (or, equivalently, their
projections onto the frequencies {ωj}mj=1, as in a compressive
sensing scheme [9]) must be acquired and stored at full
resolution (high bitrate) in order to expansively evaluate (in
software) their contributions zxi to the sketch. A resource-
preserving (e.g., computational or energy efficient) compres-
sive learning sensor should directly and solely acquire zxi .
While random projections can be cheap to compute (e.g., by
using fast structured random projections [10], [11] or, possibly,

1A sketch ΦS of a vector set S is said linear if ΦS∪S′ = ΦS + ΦS′ .
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by relying on optical random processes [12]) the evaluation of
the complex exponential in (2) is complicated to implement in
hardware—the costliest step in fast sketch computation [10].

Inspired by recent works concerning 1-bit random em-
beddings [13], we propose a new sketch procedure, illus-
trated in Fig. 1. This one is conceptually much simpler to
integrate directly in hardware (e.g., using voltage controlled
oscillators [14]), bypassing the high-bitrate signal acquisition.
We replace the costly exp(−i ·) signature function by 1-
bit universal quantization q(·) = sign (cos(·)) = 2(b ·2π c
mod 2)−1. This function (represented in Fig. 1c), corresponds
to taking the least significant bit (LSB) of a uniform quantizer
with quantizer stepsize π. We justify this modification by
proving that the periodicity of the signature function is much
more important than its particular shape. While our sketch is
cheaper to compute, it retains the advantages of the original
one, i.e., it is linear (prone to distributed computing) and its
required size m scales—as we show in our experiments—still
as O(nK), with only a 15 to 25% increase compared to CKM.
Outline: Sec. II recapitulates how CKM performs clustering
from the sketch zX . We propose a generalized sketch zX,f
in Sec. III where the signature exp(−i·) is replaced by a
generic periodic function f(·). Our main result states that,
in the CKM clustering method, zX,f can be used instead of
zX , even though f is potentially non-differentiable, thanks
to the addition of a random dithering on the argument of f .
This claim is supported by the possibility to recover the cost
function implicitly minimized in CKM from zX,f (Prop. 1).
Based on this observation, in Sec. IV we define our Quantized
Compressive K-Means (QCKM) method that solves KMC from
zX,q , a 1-bit sketch of the dataset associated with f = q. We
validate experimentally that QCKM competes favorably with
CKM in Sec. V, before concluding in Sec. VI.
Related work: Most fast clustering methods for massive
datasets rely on sample-wise dimensionality reduction [15]–
[18]. One notable exception is the coresets method [19] that
proposes to subsample the dataset to both approximate the
SSE and boost K-means. For the related kernel K-means
problem, [20] uses Random Fourier Features [21], i.e., the low-
dimensional mapping z(·) defined in (2). For u,v ∈ Rn, the
inner product 〈zu, zv〉 approximates a shift-invariant kernel
κ(u,v) associated with the frequency distribution Λ. CKM [8]
actually averages individual RFF of data points. Interestingly,
κ also defines a Reproducing Kernel Hilbert Space in which
two probability density functions (pdfs) can be compared
with a Maximum Mean Discrepancy (MMD) metric [22]–[26].
Equipped with the MMD metric, the Generalized Method of
Moments [27] in (3) is equivalent to an infinite-dimensional
Compressed Sensing [11] problem, where the “sparse” pdf un-
derlying the data (e.g., approximated by few Diracs) is recon-
structed from a small number of compressive, random linear
pdf measurements: the sketch [26]. The method to solve (3)
is thus inspired by the OMP(R) CS recovery algorithm, i.e.,
Orthogonal Matching Pursuit (with Replacement) [28], [29].
In this work, analogously to how RFF are generalized to any
periodic signature of random projections in [13], [30], pooled
RFF (the dataset sketch) are generalized to pooled periodic

signatures of random projections, with universal quantization
(known to preserve local signal distances) as a particular case.

II. BACKGROUND: COMPRESSIVE K-MEANS (CKM)

Most unsupervised learning tasks amount to estimating
(some parameters of) the unknown probability distribution P
from N learning examples xi

iid∼ P . Compressive learning
aims at estimating P from its sketch A(P) ∈ Cm: a random
sampling of its characteristic function φP(ω) := Ex∼P eiωTx

at m frequencies Ω = (ω1, · · · ,ωm) drawn from a well-
specified distribution ωj

iid∼ Λ. The sketch operator reads2

A(P) := Ex∼P e−iΩTx = (φ∗P(ωj))
m
j=1

' zX := A(P̂X) = 1
N

∑
xi∈X e

−iΩTxi , (4)

where the sketch zX of a dataset X actually refers to the
sketch of its empirical pdf, P̂X := 1

N

∑
xi∈X δxi , as an-

nounced in (2). Given its sketch A(P), P can be approximated
by a pdf Q belonging to some simple (“sparse”) model set
G—where the approximation error is quantified by the MMD
metric , that can in this particular context be written as
γ2

Λ(P,Q) := Eω∼Λ |φP(ω) − φQ(ω)|2 [24], [31]. The `2
sketch distance serves as an estimate for γΛ(P,Q), hence in
practice Q is found by solving the sketch matching problem:

Q∗ ∈ arg min
Q∈G

‖A(P)−A(Q)‖2 ' arg min
Q∈G

γ2
Λ(P,Q). (5)

In CKM, A(P) is approximated by A(P̂X), and Q is a
weighted mixture of K Diracs located at the the centroids
ck ∈ C ⊂ Rn, i.e., G := {∑K

k=1 αkδck : ck ∈ C, αk >
0,
∑
αk = 1}. From (5) the CKM objective function reads:

(CCKM,αCKM) ∈ arg min(C,α) ‖zX −A(
∑K
k=1 αkδck)‖2, (6)

as announced in (3). This non-convex problem is hard to solve
exactly, but the CKM algorithm (based on OMPR) [8], detailed
in pseudocode below, seeks an approximate solution. More
precisely, CKM greedily selects new centroids minimizing a
residual r ∈ Cm (Steps 1 and 2) inside a box with lower and
upper bounds l,u ∈ Rn, respectively, enclosing the data X ,
and eventually replacing bad centroids in Step 3. The centroid
weights αk are then computed and a global gradient descent
initialized at the current values allows further decrease of the
objective (Steps 4 and 5). CKM relies on solving several (not
always convex) optimization sub-problems, in practice solved
approximately (a local optimum is found) using a quasi-
Newton optimization scheme.
CKM parameters: The frequency distribution Λ(ω) ought
to define a meaningful metric γΛ, i.e., the objective function
of CKM. By Bochner’s theorem [32], Λ is associated with a
positive definite, translation-invariant kernel (“similarity mea-
sure”) κ(x,x′) = K(x − x′) through the Fourier transform
K(u) = F(Λ)(u) :=

∫
e−iuTωdΛ(ω). Concretely, Λ limits

the frequencies of P we are able to observe in A(P), acting
as a “low-pass filter” convolving P with K. Λ thus implicitly
controls CKM’s clustering scale, and requires some a priori

2Scalar functions (e.g., exp) are here applied component-wise on vectors.



3

Algorithm: CKM: Compressive K-Means clustering.

1 r ← zX , C ← ∅ (Initialize residual and centroids)
2 for t = 1, · · · , 2K do
3 Step 1 : gradient descent selects c highly correlated with residual:
4 c = maximizec̄ <〈 Aδc̄

‖Aδc̄‖
, r〉 s.t. l 6 c̄ 6 u

5 Step 2 : add it to the support:
6 C ← C ∪ {c}
7 Step 3 : Reduce support by Hard Thresholding:
8 if |C| > K then
9 β = arg minβ̄

∥∥zX −∑|C|
k=1 β̄k

Aδck
‖Aδck‖

∥∥ s.t. β̄ ∈ R|C|
+

10 C ← set of K centroids ck corresponding to K largest
magnitude values of β.

11 end
12 Step 4 : Project to find optimal weights:
13 α = arg minᾱ

∥∥zX −∑|C|
k=1 ᾱkAδck

∥∥ s.t. ᾱ ∈ R|C|
+

14 Step 5 : Global gradient descent

15 (C,α)← minimizeC̄={̄ck},ᾱ
∥∥zX −∑k ᾱkAδc̄k

∥∥ s.t. l 6 c̄k 6 u

16 r = zX −
∑|C|
k=1 αkAδck (Update residual)

17 end

insight about P . In practice CKM uses heuristics adjusting Λ
from a subset of X [26]. For the required sketch dimension
m, [7] provides theoretical guarantees when m = O(nK2)
but experiments strongly suggest O(nK) is sufficient [8].

III. SKETCHING WITH GENERAL SIGNATURE FUNCTIONS

We here generalize the sensing function exp(−i·) of the
sketch (4) to a general (e.g., discontinuous) periodic func-
tion f(t) assumed (w.l.o.g.) 2π-periodic, centered and taking
values in [−1, 1]. Therefore f(t) =

∑
k 6=0 Fke

ikt, with Fourier
series coefficients Fk such that F0 = 0, and F±1 6= 0 (up to
a rescaling of f ). The generalized sketch operator Af is

Af (P) := Ex∼P f(ΩTx+ ξ) for ωj
iid∼ Λ(ω), (7)

with a uniform dithering ξj
iid∼ U([0, 2π]).

Our main question is now: given Af (P), is it still possible
to approximate P by some low-complexity distribution Q,
as done in (5)? Our answer is positive since we can still
approximate the same objective function, i.e., the MMD metric
γΛ(P,Q), from this new sketch. Intuitively, the dithering ξ
allows us to “separate” Af (P) into two terms: one associated
with the low frequencies of f , that contributes to the target
objective γΛ(P,Q), and one “high-frequency” term that is
constant for the relevant optimization problem. This is for-
mally proven in the following proposition.

Proposition 1. Given pdfs P,Q, denoting f ’s 1st harmonic
as f1(t) :=

∑
k∈{±1} Fke

it, there is a constant cP > 0 s.t.
∣∣(2m|F1|2)−1‖Af (P)−Af1(Q)‖2−γ2

Λ(P,Q)−cP
∣∣ 6 ε, (8)

with probability exceeding 1 − 2e−Cfmε
2

on the draw of Ω
and ξ, for Cf = 8|F1|4 (1 + 2|F1|)−4.

Proof. Note that ‖Af (P)−Af1
(Q)‖2 =

∑m
j=1 Zj with Zj :=

|Ex∼P f(ωTj x+ ξj)−Ey∼Q f1(ωTj y+ ξj)|2 6 (1 + 2|F1|)2.
Define F̃k = Fk(δk′,1 + δk′,−1) with δp,q the Kronecker delta.
Since Eξ eik′ξ = δk′,0, µZ := Eωj ,ξj Zj reads

µZ = E
ω
E
ξ
|∑
k 6=0

eikξ(Fk E
x∼P

eikωTx − F̃k E
x′∼Q

eikωTx′
)|2

= Eω∼Λ

∑
k 6=0 |FkφP(kω)− F̃kφQ(kω)|2

= 2|F1|2γ2
Λ(P,Q) + Eω

∑
|k|>2 |Fk|2|φP(kω)|2.

Hoeffding’s inequality applied on the bounded Zjs gives (8)
with cP = Eω

∑
|k|>2

|Fk|2
2|F1|2 |φP(kω)|2 constant w.r.t.Q. Note

that cP <∞ since f is bounded and F1 6= 0.

Prop. 1 allows us—at the price of adding a dithering—to
sketch a dataset into zX,f = Af (P̂X) with a very large class
of functions f , e.g., that model a realistic sensing scheme.
Indeed, it shows that, for a fixed pair of pdfs, replacing CKMs
objective in (5) by ‖Af (P) − Af1

(Q)‖2 still approximates
(up to a harmless constant cP ) the MMD metric γ2

Λ(P,Q):
an intuitively good cost function as justified by previous work.
Moreover, thanks to the fact that f1 is a cosine, the relevant
gradients of this new cost function enjoy the same nice analytic
expressions as CKM. Fixing the probability of (8), we also see
that (again, for a fixed pair of distributions) the approximation
error ε decays like O(1/

√
m) as m increases. However, it is

yet unclear how large m must be to characterize the quality
of the solution of (10). This would require Prop. 1 to hold
for all Q in a “low-dimensional” set G 3 P as done in [7], a
generalization that we postpone to a future work.

IV. QUANTIZED COMPRESSIVE K-MEANS (QCKM)

We now instantiate the results of Sec. III to the 1-bit uni-
versal quantization f(t) = q(t) = sign (cos(t)) ∈ {−1,+1}
to construct a hardware-friendly quantized sketch. The 1-bit
universal quantizer q is a square wave and can be seen as the
Least Significant Bit of a uniform quantizer with quantization
stepsize π [13], [30]. The resulting sketch operator Aq on a
pdf P (resp. the sketch zX,q of a dataset X) is

Aq(P) := Ex∼P q(ΩTx+ ξ) ' zX,q := Aq(P̂X), (9)

and the clustering problem in (6) is now replaced by

(CQCKM,αQCKM)∈arg min(C,α) ‖zX,q−Aq1(
∑
k αkδck)‖2. (10)

where q1 denotes the first harmonic of q (a cosine). Interest-
ingly, the contribution zxi,q = Aq(δxi) ∈ {−1, 1}m of each
signal xi can be encoded by only m bits, as illustrated Fig. 1.

To solve (10), we adapt the CKM algorithm to account for
the changes in objective function, which we call the Quantized
Compressive K-Means (QCKM) algorithm. More precisely, zX
is replaced by zX,q at initialization and in Steps 3, 4 and 5,
and Aδc is replaced by Aq1δc in Steps 1, 3, 4 and 5. Small
modifications also take into account the addition of ξ.

V. EXPERIMENTS TO VALIDATE QCKM

We show now empirically that QCKM requires only m =
O(nK) measurements to find good centroids, with a hidden
multiplicative constant only slightly higher (15 to 25%) than
for CKM—remembering that QCKM receives m-bit sketch con-
tributions whereas CKM uses full-precision contributions. We
validate QCKM on both synthetic and real datasets and compare
the performance with k-means (built-in MATLAB function)
as well as CKM (from the SketchMLbox toolbox [33]).
Synthetic data: We compute phase transition diagrams
(Fig. 2) to highlight the relationship between the required
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Fig. 2: Empirical success rate—from 0% (black) to 100% (white)—evolution
of QCKM with m/nK, and (a) n, or (b) K. The red solid line shows the
transition to a success rate above 50% for QCKM; for comparison, the yellow
dotted line shows the same transition for CKM.

amount of measurements m, and the sample dimension n
or the number of clusters K. For this, we arbitrary say
that (Q)CKM is successful if SSE(Q)CKM 6 1.2SSEk-means,
where SSEk-means is the best out of 5 k-means runs. These
diagrams show how the empirical success rate (averaged over
100 trials) of QCKM evolves with m, as n or K varies.
For fair comparison with the complex exponential sketch
(composed of a cosine and sine in its real and imaginary
part, respectively), the jth measurement of the quantized
sketch is, in our experiment, composed of two measurements
with the same frequency ωj but two dithering values ξj
and ξj + π

2 . First, we draw N = 10000 samples uniformly
from K = 2 isotropic Gaussians in varying dimension n,
with means ±(1, · · · , 1)> ∈ Rn and covariance matrix n

20 Id.
The phase transition diagram is reported Fig. 2a, along with
lines showing the transition to more than 50% success rate
of QCKM (red solid) and, for comparison, of CKM (yellow
dotted). This transition happens (except for a deviation at
small dimensions) at a constant value of m/nK: as CKM,
QCKM requires m to be proportional to n. In this experiment,
QCKM requires about 1.13 more measurements than CKMs
(complex and full precision) measurements. Fig. 2b is the
phase transition for varying numbers of centroids K while
fixing n = 5. Samples are drawn from K Gaussians with
means chosen randomly in {±1}n, other parameters being
identical to the previous experiment. Successful estimation
occurs when m scales linearly with K, with a factor of about
1.23 between QCKM and CKM sample complexities. These
experiments suggest that CKMs empirical rule m = O(nK)
holds for QCKM, with a slightly higher multiplicative constant.
Real datasets: The performance of QCKM are also assessed
on real (and non-Gaussian) data: the spectral clustering (SC)
[34] of the MNIST dataset (70000 28 × 28 pixel images of
handwritten digits [35]). This experiment aims at detecting,
in an unsupervised setting, the 10 clusters corresponding to
the digits 0− 9 from their representation in a 10-dimensional
feature space3. We run the compressive clustering algorithms
with m = 1000 frequencies. To avoid bad local minima,
several replicates of k-means are usually run and the solution
that achieves the best SSE is then selected. We thus also
perform several replicates of (Q)CKM, but since computing the
SSE requires access to whole dataset (which is not supposed
available to the compressive algorithms), we select the solution
of CKM (resp. QCKM) minimizing (6) (resp. (10)) [8].

3We thank the authors of [8] for having shared this SC dataset.

Average squared centroid distance Adjusted Rand Index

Fig. 3: Mean with standard deviation over 100 experiments of the performance
(SSE/N and ARI on left and right, respectively) of the different compared
clustering algorithms (k-means in blue, CKM in yellow, QCKM in green),
both for 1 and 5 repetitions of the learning algorithms.

We use two performance metrics to assess the clustering
algorithms: the SSE in (1), an obvious KMC quality measure,
and the Adjusted Rand Index (ARI) [36] that compares the
clusters produced by the different algorithms with the ground
truth digits. A higher ARI means the clusters are closer to the
ground truth, with ARI = 1 if the partitions are identical and
ARI = 0 (on average) if the clusters are assigned at random.

Fig. 3 reports the mean and standard deviation (excluding
a few clear outliers for CKM and QCKM, occuring about
5% of the time on average) obtained for both performance
metrics. Globally, QCKM performs similarly to CKM, retaining
its advantages over k-means. First, the compressive learning
algorithms are more stable: their performance exhibit small
variance, in contrast with k-means that hence benefits the
most from several replicates. In addition, while for several
replicates k-means outperforms (Q)CKM in terms of SSE,
the solutions of (Q)CKM are closer (as quantified by the
ARI score) to the ground truth labels: this suggests that the
objectives (6) or (10) are better suited than the SSE for (at
least) this task. Note that QCKM performances have moderately
higher variance than those of CKM: this is probably due to the
increased measurement rate of QCKM required to reach similar
performance (as suggested by the first experiments) while here
both algorithms ran with m = 1000.

VI. CONCLUSION

In the context of compressive learning, we have shown that
replacing the complex exponential by any periodic function
f in the sketch procedure can be compensated by i) adding
a dithering term to its input, and ii) retaining only the first
harmonic of f at reconstruction. However, Prop. 1 is valid
for fixed distributions: future work should provide guarantees
for all distributions, e.g., belonging to some low-complexity
set G. Still, we believe this result can simplify the design
of low-power sensors acquiring only the minimal information
required for some learning task (e.g., the sketch contribution).
To illustrate this idea, we proposed QCKM, a compressive
clustering method based on CKM [8] but using hardware-
friendly, 1-bit sketches of the learning data, and validated
this approach through experiments. However, while yielding
promising results in practice, the greedy algorithms that try
to solve the non-convex sketch matching optimization prob-
lem (e.g., CKM and QCKM) still lack theoretical convergence
guarantees. Future work could also consider the binarization
of new learning tasks (e.g., Compressive PCA [7]), or explore
other sketching mechanisms.
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