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Abstract

Over the last few years, machine learning—the discipline of automatically
fitting mathematical models or rules from data—revolutionized science,
engineering, and our society. This revolution is powered by the ever-
increasing amounts of digitally recorded data, which are growing at an
exponential rate. However, these advances do not come for free, as they
incur important computational costs, such as memory requirements, exe-
cution time, or energy consumption. To reconcile learning from large-scale
data with a reasoned use of computational resources, it seems crucial to
research new learning paradigms.

A particularly promising candidate is the compressive statistical learn-
ing framework. In a nutshell, the idea of this method is to first compress the
learning data, in an efficient manner, as lightweight sketch vector (given by
random feature moments of the data). The desired learning methods are
then carried out using only this sketch, instead of the full dataset, which
can sometimes save orders of magnitude of computational resources.

This thesis broadens the scope of the compressive learning framework
by exploring three extensions of it. First, the quantization of sketch con-
tributions is studied, which allows to further reduce the computational
burden associated with computing the sketch. Second, the addition of a
privacy-protecting layer on top of the sketch is considered, which allows
to learn from the sketch while ensuring the privacy of the data contribu-
tors. Finally, generalizations of the framework to novel tasks are discussed.






Contents

Acknowledgements . . . ... .. ... L i
Abstract . . . . . . ... ... iii
Contents . . . ... ... ... . ... L. v
Introduction . . . . ... 1
1.1 The big picture of “big data” . . ... ... ... ... .... 3
1.2 Compressive Learning, a possible solution? . . . .. ... ... 6
1.3 Outline and contributions . . . . . .. ... ... ... . .... 7
1.4 Notations and conventions . . . . .. ... ........... 11
Preliminaries: Flavors of Compressive Learning . . . ... . .. 13
2.1 Machine Learning . . . . .. ... oo 14
2.2 Signal processing . . ... Lo 39
2.3 Massive data synopses . . . . ... oo 48
2.4  Probability measures geometry . . . . .. ... 55
2.5 Compressive Learning . . . . . . . ... L 61

Quantized Sketches

Asymmetric Random Periodic Features . . . . . ... ... ... 73
3.1 Introduction . . . . ... 74
3.2 Preliminaries . . . . . ... o 80
3.3 Expected kernel (asymptotic case) . . . . . ... ... ... 86
3.4 Approximation error analysis (non-asymptotic case) . . .. .. 89
3.5 Semi-quantized random Fourier features . . . ... ... ... 97



% | Contents

vi

3.6 Experiments . . .. ... .. .. ... .. 100
3.7 Asymmetric RPF beyond one-bit quantization®* . . . . . . . .. 110
3.8 Conclusion . . . . . ... L 115
Quantized Sketching with Guarantees . . . . ... ... ... .. 117
4.1 Introduction . . . . .. ... 118
4.2 Preliminaries . . . . .. ... 123
4.3 Asymmetric Compressive Learning . . . . ... ... ... ... 129
4.4 Excess risk guarantees . . . .. ... oo 134
45 Experiments . . . . . ... e 144
46 Conclusion . . . . . L 155

Private Sketches

Private Sketching . . . . . . ... ... ... ... 159
5.1 Preliminaries: notions of differential privacy . . . . . ... ... 160
5.2 Private Sketching Mechanism . . . ... ... ... ...... 170
5.3 Experiments . . . . . . ... 175
5.4 Discussion . . . . ... 180
5.5 Conclusion . . . . . . . 182

Towards General Compressive Learning

Extensions to novel tasks . . . . ... ... ... ... ..., 187
6.1 Compressive Classification . . ... ... ............ 188
6.2 Compressive Learning of Generative Networks . . . ... ... 194
6.3 When Compressive Learning fails . . . . ... ... ... ... 201
Conclusion . . . . ... ... ... 209
7.1 Summary and perspectives of the contributions. . . . . . . .. 209
7.2 Final thoughts: compressive learning, hype or hope? . . . . . . 216
Bibliography . . . . . . ... . 219
Useful quantities about periodic functions . . . . ... ... .. 249
A.1 Reminder on the relevant definitions. . . . .. ... ...... 249
A.2 Computing the constants . . . . . . ... ... ... ...... 251
The pycle toolbox . . .. ... ... .. .. .. .......... 255



Contents | *

B.1 Preliminaries . . . . . . ... L 256
B.2 A tutorial tour of pycle . ... ... ... ... ... .. 257
B.3 Advanced features of pycle . ... ... ... ... ...... 261
Patching '"'Representation and Coding of Signal Geometry" . . 263
C.1 Geometry-preserving embedding: the initial approach . . . .. 263
C.2  An alternative geometry-preserving embedding . . . . . . . .. 268
List of symbols and acronyms . . . . ... ... ... .. .. ... 273

| vii






Introduction

" E ARE DROWNING IN INFORMATION, while starving for wis-

dom." When E. O. Wilson, myrmecologist' and popular

scientific writer, wrote those words back in 1998 [Wil98], 1
doubt that he anticipated just how much this quote (and its many variants)
would grow in popularity during the following two decades; contributing,
in an ironic twist, to the flood it denounces by prompting new blog posts
and social media shares every day. It is however not surprising that this
feeling of "drowning in information" resonates so strongly with all of us
today. Indeed, thanks to numerous technological advancements, we are
able to record an incredibly wide variety of "raw information" in the form
of data. From classic human-readable signals (images, sound, video, multi-
spectral volumes, etc.) to highly structured ones (textual corpora, DNA
sequences, molecular arrangements, social networks, etc.), from macro-
scopic quantities monitored across the globe (cosmological observations,
financial markets, meterological recordings such as temperature, pressure,
wind, etc.) to the most detailed accounts of our individual lives (geolo-
calization, movie preferences, buying habits, online behavior, etc.), the list
could go on forever. Over the last few years, the volume of data that hu-
mankind produces on a daily basis has drastically increased, and the trend
does not look like slowing down any time soon.

IMyrmecology, subfield of biology, is the study of ants; it is not related to this thesis at all.

I 1



1 | Introduction

This phenomenon, also known by the buzzword "big data", can be ex-
plained by a multitude of factors. The new availability of data-recording
devices that are affordable to the general public immediately comes to
mind, the main ambassador of this trend being the smartphone, cramped
with diverse sensors and cameras [DKBM21]. Another part of the answer
is certainly the rise of the internet (and social media in particular), which
made a perpetual consumption—and generation—of data a crucial part of
our lives [VD20]. Beside these and other “extrinsic” explanations (which
explain the availability of new data acquisition modalities), I believe there
is an even more important driving force behind our newfound obsession
with data. Indeed, the fact that the intrinsic value of data has drastically in-
creased creates strong incentives (e.g., for commercial, military, or scientific
reasons) for companies and institutions to invest in massive data collection.

This increased valuation of data is a consequence of important advances
in the field of machine learning, which aims at transforming raw data into
useful insights and decisions. Machine learning (ML) itself is not a new
phenomenon; it has been an active research topic since the fifties (Alan
Turing described "learning machines" in his seminal paper? as early as
1950 [Tur50]). However, the smashing success of deep learning around 2010
sparked massive interest in the field, attracting ever-increasing amounts of
interest, funding, and researchers. As a result, the advances in ML have
accelerated considerably over the last few years. Machine learning agents
have become very good at extracting valuable knowledge from data, often
surpassing human performance.

Large-scale machine learning (i.e., the synergy between advances in big
data and machine learning) led to scientific and engineering breakthroughs
that were previously undreamed of—but these advances do not come for
free, as they incur important computational costs. This claim is developed in
Section 1.1, which paints a broad view of the large-scale ML landscape.

In order to realign large-scale machine learning with a more reasoned
use of computational resources, it seems crucial to research new learning
paradigms. Among others, the recent compressive statistical learning frame-
work [GBKT17,GCK"20], also called Compressive Learning (CL) for short,
is a promising candidate. In a nutshell, the idea is to "compress" the learn-
ing data, in an efficient manner, as a single sketch vector of moderate size.

2Many of Turing’s ideas from that paper, such as the famous "Turing test", stood the test
of time remarkably well. I cannot resist including a quote from it that should resonate with
most of machine learning researchers today: "An important feature of a learning machine is that
its teacher will often be very largely ignorant of quite what is going on inside, (...)".
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The desired learning would then be carried out using only this sketch in-
stead of the full dataset, which has the potential to save massive amounts
of computational resources. Section 1.2 further explains this framework®
and why it is promising for tackling some of the challenges posed by large-
scale machine learning.

This thesis is inscribed in the compressive learning framework. In par-
ticular, it explores several extensions of it: quantization of the sketch con-
tributions, adding a privacy-protecting layer on top of the sketching mech-
anism, and a tentative generalization to novel tasks and sketching tech-
niques. Section 1.3 briefly describes those contributions, and explains how
they are organized into the next chapters.

1.1 The big picture of “big data”

Over the last few years, machine learning—the discipline of automatically
fitting mathematical models or rules from data—revolutionized science,
engineering, and our society. This recency could maybe seem surprising.
Indeed, storing data is not a new idea; in fact, humanity started to record
numeric quantities more than five thousand years ago®*. Taking algorithmic
decisions from data is not a new idea either (although significantly more
recent); for example, Moritz Hardt and Benjamin Recht begin their historic
overview of machine learning around 1690 with the story of Halley’s life
table [HR21]. The earliest "machine learning" technique that is still applied
today, the least-squares method, can be traced back to Legendre [Leg06] in
the early 19th century. And as argued above, with its birth in the 1950s, the
specific ideas of letting machines learn from data is almost as old as general-
purpose computers. Contrasting this decades-old evolution with the new-
fashioned explosion of ML in practical applications begs the question: what
changed?

1.1.1 Large-scale machine learning: ingredients for modern success

Ingredient 1: more hardware An obvious but crucial difference between
data-driven algorithms from the fifties and from today is the exponential
increase in raw computation power (e.g., following Moore’s "law" [Macl1],
but also the development of "dedicated" hardware such as GPUs [SBS05]),

3For now, we settle for a high-level description, postponing technical details to Chapter 2.
“See the fascinating Wikipedia entry on the subject: https://en.wikipedia.org/wiki/
History_of_writing.
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which allows machines to perform an ever-increasing amount of opera-
tions for a given "budget" (i.e., for a given computation time or monetary
amount). As we will see in the other two ingredients, the ability to per-
form enormous amounts of computations is a sine qua non prerequisite for
the success of modern large-scale machine learning.

Ingredient 2: more layers The most successful machine learning mod-
els today, such as deep neural networks, are characteristic in that they in-
volve several thousands (sometimes up to billions) of tunable parameters®. These
last few years, the general rule of thumb that dominates machine learning
practice is that the more parameters you can train, the better your model
will be. One of the hottest topics in the field is the "double descent” phe-
nomenon (see e.g., [NKBT19]), which shows that, contrary to previous
knowledge, the test error of ML models (sometimes) decreases in over-
parameterized regime (i.e., when the number of parameters is larger than
a critical "interpolation threshold").

Ingredient 3: more data This thesis opened with the claim that the in-
crease of data collection was motivated by the rise of machine learning.
But in turn, one could argue that modern machine learning models—deep
neural networks in particular—also require massive amounts of data to be
trained properly in the first place. To provide an engineering metaphor,
this symbiotic relationship between data and models is similar to the one
between fuel and combustion engines: on one hand, the continuous in-
vention of more sophisticated and ambivalent engines requires to acquire
ever-increasing amounts of fuel; on the other hand, the availability of fuel
in larger quantities facilitates the invention of more complex (and power-
hungry) engines. Both trends reinforce each other.

As it happens, the amount of digitally recorded data—i.e., machine
learning fuel—has increased exponentially over the last few years. A pop-
ular statistic online, often attributed to IBM, is that 90% of today’s data
was produced in the last two years. Other numbers that are often shared
online are that in 2020, every second 1.7MB of data is produced per person®,
collectively adding up to a total of 44ZB of digital data stored in total” (a
zettabyte (ZB) is 10! bytes). While those values and other wild guesses are
to be taken with a grain of salt (they should give, at best, a rough estimate

Shttps://www.speechmatics.com/blog/machine-learning-is-getting-big-part-i/
®https://www.domo.com/learn/data-never-sleeps-6.
"https://www.raconteur.net/infographics/a-day-in-data/.
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of the orders of magnitude), there is no doubt that we are deep into the
so-called Zettabyte Era® [Xu14]. Obviously, not all of this recorded data is
suitable for learning, but it seems reasonable to postulate that the amount
of usable data has increased at least proportionally.

1.1.2  The computational pricetag

As a result, large-scale machine learning models, which rely on massive
amounts of data and computation power to train gigantic models, now
perform extremely well (often exceeding human accuracy), and are already
a crucial part of our lives [HEM19]. Given those impressive feats, large-
scale machine learning seems to be a marvel of human engineering, and
we should eagerly await the new wonders it will bring us as the trend
continues. However, those wonders will not come for free, and the pricetag
might somewhat dissipate our eagerness.

Indeed, training from ever larger quantities of data requires ever more
computational resources: see, for example, one of the many studies on the
subject [AJYMT15,QWD"16,LGEC17,SGM19, TGLM20,BGMMS21]. Alarm-
ingly, as detailed in [TGLM20], although modern ML models keep im-
proving in "performance” (according to a given metric such as classifica-
tion accuracy or F1 score), the computational cost’ grows superlinearly with
this performance metric (i.e., a polynomial of high degree, or even exponen-
tially). This means each time the performance of ML on some benchmark
improve by a fixed amount, the cost to reach the next improvement (by the
same amount) drastically increases.

Why computational costs matter In most research areas, we measure the
"computational cost” of an algorithm by the time and space complexities of
an algorithm, i.e., how the number of operations and memory elements in-
crease with the size of the problem. These metrics are convenient because
they are relatively straightforward to analyze, and are (by definition) rela-
tively universal (i.e., they do not depend on the implementation, language,
machine they run on, etc.).

However, it is important to keep in mind what computational costs im-
ply in practice. For example, a large computational cost also obviously
implies a large monetary price (amount of money that training the model
will cost). To give an extreme example, it is estimated [SGM19] that train-

8https://en.wikipedia.org/wiki/Zettabyte_Era.
9Here evaluated in GigaFLOPs.
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ing a modern state-of-the-art large-scale model can cost up to hundreds
of thousands of dollars. Such high costs can create a "gatekeeping" effect,
which prevents smaller institutions to keep up with the evolution of ma-
chine learning, and conversely gives a lot of influence to large-scale insti-
tutions (such as Google) that are able to cover such expenses [AW20].

Another "bottom line" cost of crucial interest is the energy consumption
of training models, which can typically be decomposed as the product of
the training time and the power consumption of the required hardware. Of
course, this energy is billed in the form of money to the company training
the model (as explained above), but is also billed in the form of carbon
emissions to the whole planet. To give another example from [SGM19] the
authors estimate that the training of one modern model can be assimilated
to the CO, emissions of five cars over their whole lifetime.

Although the exact computational costs are arguably difficult to esti-
mate accurately (the numbers provided here are only rough estimates),
the main takeaway seems clear: there is a strong interest in researching
lightweight alternatives to large-scale machine learning, maybe trading off
some accuracy for reduced amounts of computations. This is the main mo-
tivation of compressive learning, as described in the next section.

Remark 1.1 (Other impacts of large-scale ML). We focused on the compu-
tational cost because it is the most relevant for this thesis, but this is not
the only "cost" that is being paid to enable modern large-scale machine
learning. One can cite, for example privacy infringements (discussed in
Chapter 5), bias and fairness issues [BG18, BGMMS21], and ethical dilem-
mas [HEM19], which all impact our society as a whole. Although a com-
plete discussion of these issues exceeds by far the scope of this thesis, the
main takeaway is that modern ML practices created a crowd of unique and
diverse, yet pressing and daunting, challenges.

1.2 Compressive Learning, a possible solution?

The previous section makes the case that there is a need for new, compu-
tationally efficient, learning paradigms. One particularly promising can-
didate, which is explored in this thesis, is the compressive statistical learn-
ing (CL) framework [GBKT17]. In a nutshell, the main specificity of CL is
that it does not learn from the large-scale dataset directly but rather from a
lightweight summary—called sketch—constructed by aggregating random
feature moments of the data.
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To be more specific, the CL workflow breaks down the expensive learn-
ing operation into two efficient sub-steps. In a first sketching phase, the
dataset is compressed into a small sketch vector, defined as the average
of nonlinear random features of the dataset. Crucially, this compression
requires only a single pass over the dataset, which ensures that its compu-
tation scales favorably with large-scale datasets.

Then, during the learning phase, the desired machine learning model is
extracted from the sketch alone. Since the sketch is typically much smaller
than the full dataset, this step is potentially orders of magnitude cheaper
(e.g., in terms of required memory and computation time) than learning
from the dataset directly.

Compressive learning is a promising framework but is a relatively re-
cent topic: it has not yet been researched intensively, and has seen limited
applications in practice. The aim of this thesis is to contribute to the devel-
opment of this field by several contributions, each broadening the scope of
CL in unique ways.

1.3 OQutline and contributions

This thesis extends the compressive learning framework along three differ-
ent axes, namely, in rough order of importance: quantization of the sketch
contributions, adding a privacy-preserving layer to the sketch, and tenta-
tive generalizations of the CL framework to other tasks. The organization
of those contributions into the present manuscript is explained below.

Part 0: Solid foundations. This preliminary part comprises two chapters.
Chapter 1, which the reader is currently looking at, introduced the broader
context of compressive learning. An in-depth description of compressive
learning is then given in Chapter 2. To do so, that chapter first provides
a tutorial-style overview of the many disciplines supporting compressive
learning, which serves as justification to gently introduce many of the tools
and notations that will be needed afterwards, e.g., random features, com-
pressive sensing, general sketching methods, and metrics on the space of
probability measures.

Part I: Quantized Sketches. This part, which could be seen as the main
contribution of this thesis, tackles the question of quantizing the sketch con-
tributions. In fact, as will become clearer, the obtained results apply to a
broader framework, coined "asymmetric" random features and CL.
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A first key result is presented in Chapter 3. This chapter is a bit apart
from the others in that it does not consider sketching (i.e., averaged ran-
dom features) yet, but the individual features (without averaging) instead.
More particularly, this chapter shows that, when two signals are to be com-
pared through their random periodic features (a generalization of random
Fourier features [RR08]), it is sometimes beneficial to use different feature
maps for the two signals of interest. In particular, it is possible to quantize
one of the two random feature maps while still recovering the same kernel
that one would obtain without this quantization. In this chapter, a partic-
ular effort is devoted to proving guarantees holding for an infinite signal
set while at the same time dealing with the possibly discontinous nature
of features (as in quantized features). Those guarantees serve as one of the
main building blocks of the next chapter.

Then, in the following Chapter 4, we study the so-called quantized
sketching scheme, where the sketch contributions of the individual data
vectors are binarized. Among others, the interest of this approach lies
in the potential to implement dedicated hardware sketch sensors, which
would drastically reduce the computational complexity of computing the
sketch. Practically, we present a general strategy, asymmetric compres-
sive learning (ACL), to learn from generic "distorted" sketch contributions.
We then address the important question of learning guarantees obtained by
learning from such a distorted (e.g., quantized) sketch—this is where the
guarantees of the previous chapter are leveraged. The approach is further
validated by extensive numerical simulations.

Part II: Private Sketches. This second axis, consisting of a single Chap-
ter 5, studies a modification to the sketch to ensure the privacy (and more
specifically, the differential privacy) of the contributors to the dataset. Intu-
itively, the idea is that compressive learning is a good match for privacy,
as both approaches try to extract as most as possible information from the
dataset while forgetting as much as possible about the individual data vec-
tors. As we will see, this intuitive hope is justified, as this approach shows
encouraging empirical success when compared to other existing privacy-
preserving mechanisms. This work is a joint work with Antoine Chatalic
(IRISA, Université de Rennes) and Florimond Houssiau (Imperial College
London), and our respective supervisors: Laurent Jacques, Rémi Gribonval
and Yves-Alexandre de Montjoye.
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Part III: Towards General Compressive Learning. One of the drawbacks
of the compressive learning framework is that it is quite limited in the
range of machine learning tasks that it can solve (e.g., in the previous Parts
we consider mainly k-means and Gaussian mixture modeling). In Chap-
ter 6, we gather some tentative extensions of CL to other tasks that were
initiated during this thesis (such as classification and generative network
training). Note that those extensions are only proof-of-concepts and would
deserve to be more thoroughly studied in the future. We also present a
generic technique to investigate the result of pragmatic compressive learn-
ing algorithms, which is helpful in the context of designing novel CL cost
functions.

The main takeaway of that second-to-last chapter seems to be that it is
quite difficult to extend compressive learning to other tasks. In Chapter 7,
after summarizing the main contributions of this thesis and providing a
few perspectives on each chapter, we give a few last thoughts on these
difficulties.

1.3.1 List of publications

Hereafter is the list of scientific publications submitted in the context of
this thesis, either peer-reviewed or under review. Several of them inspired
significant parts of this manuscript, which will be explicitly mentioned at
the beginning of the relevant chapters. The publications are grouped ac-
cording to the part they are related to and, within each part, listed by order
of submission. Moreover, we mention the type of publication: journal pa-
per (J), conference paper (C), or extended abstract (A), i.e., a short version
of a conference paper (usually 2 pages).

Related to Part I (quantization of sketch contributions):

(J) Vincent Schellekens and Laurent Jacques, "Quantized Compressive K-
Means", in IEEE Signal Processing Letters (vol. 25, no. 8), August
2018, cited hereafter as [S]18b].

(J) Vincent Schellekens and Laurent Jacques, "Breaking the waves: asym-
metric random periodic features for low-bitrate kernel machines", accepted
for publication and to appear in Information and Inference: a journal
of the IMA, 2021, cited hereafter as [S]20a].

(J) Vincent Schellekens and Laurent Jacques, "Asymmetric compressive learn-
ing guarantees with applications to quantized sketches", under review at

9
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IEEE Transactions on Signal Processing, 2021, cited hereafter as [S]21].
Related to Part II (private sketching):

(C) Vincent Schellekens, Antoine Chatalic, Florimond Houssiau, Yves-
Alexandre de Montjoye, Laurent Jacques and Rémi Gribonval, "Dif-
ferentially Private Compressive k-Means", IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2019, cited
hereafter as [SCHT19a].

(A) Vincent Schellekens, Antoine Chatalic, Florimond Houssiau, Yves-
Alexandre de Montjoye, Laurent Jacques and Rémi Gribonval, "Com-
pressive k-means with differential privacy", Signal Processing with Adap-
tive Sparse Structured Representations workshop (SPARS), 2019, cited
hereafter as [SCH™19b].

(J) Antoine Chatalic, Vincent Schellekens, Florimond Houssiau, Yves-
Alexandre de Montjoye, Laurent Jacques and Rémi Gribonval, "Com-
pressive Learning with Privacy Guarantees", accepted for publication
and to appear in Information and Inference: a journal of the IMA,
2021, cited hereafter as [CSHT21].

Related to Part III (tentative extensions of CL):

(A) Vincent Schellekens and Laurent Jacques, "Compressive Classification
(Machine Learning without learning)", international Traveling Work-
shop on Interactions between low-complexity data models and Sens-
ing Techniques (iTWIST), 2018, cited hereafter as [S]18a].

(O) Vincent Schellekens and Laurent Jacques, "Compressive Learning of Gen-
erative Networks", European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning (ESANN), 2020,
cited hereafter as [S]20b].

(A) Vincent Schellekens and Laurent Jacques, "When compressive learning
fails: blame the decoder or the sketch?", international Traveling Work-
shop on Interactions between low-complexity data models and Sens-
ing Techniques (iTWIST), 2020, cited hereafter as [S]20c].

During this thesis, I also contributed to the following tutorial /review arti-
cle on the field on compressive learning and connected topics:
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(J) Rémi Gribonval, Antoine Chatalic, Nicolas Keriven, Vincent Schellekens,
Laurent Jacques, Philip Schniter, "Sketching Datasets for Large-Scale
Learning", under review at IEEE Signal Processing Magazine, 2021,
cited hereafter as [GCK™20]

Finally, as a by-product of this thesis, the pycle Python toolbox for com-
pressive learning was developed, which is described, for the interested
reader, in Appendix B.

1.4 Notations and conventions

Throughout this thesis, vectors and matrices are denoted by bold symbols.

The unit imaginary number is noted i = \/—1. The real part, the imag-
inary part, and the complex conjugation of a € C read R(a), 3(a), and a*,
respectively.

The ¢,-norm of a vector u € R reads ||u|, = (¥, |u;|P)!/? for p > 1,
with ||u#]|ee = max; |u;], and [Jullo = [suppu| = |{i : u; # 0}

The unit £, —ball (p > 1) in dimension d is noted ]Bf7 = {u e RY|||ul|, <
1}, with the shorthand B¢ = B4.

The cardinality of a finite set S is |S|, the Minkowski sum of two sets
Aand Bis A+ B = {a+b:ac Ab € B}, the index set in R? is [d] :=
{1, ---,d} ford € N.

The identity matrix in R? is I; € R?*?, and the Kronecker delta Ok ke is
defined as &y p = 1if k = k' and & p» = 0 otherwise.

By abuse of notation, evaluating a scalar function f : R — C on a vector
u € R™ means applying this function componentwise, i.e., f(u) € C™ with
(f(u)); = f(u;). Similarly, “inequalities” between vectors u,v € R™ are to
be interpreted component-wise, e.g., # < v means uj < v; foralll <j<m.

The notation ~ P denotes that a random variable, vector, or function
is distributed according to the distribution P. The uniform distribution on
a set A is noted U(.A), and “i.i.d.” means “identically and independently”
distributed.






Preliminaries: Flavors of
Compressive Learning

tributions of this thesis branch off. In turn, this core field takes its

roots from a diverse cast of rich research areas, that can be (some-
what arbitrarily) categorized in four major disciplines. This chapter pro-
vides a self-contained introduction to each of those disciplines: machine
learning in Section 2.1, signal processing in Section 2.2, data synopses in Sec-
tion 2.3, and finally the geometry of probability distributions in Section 2.4.
Given the vastness of these topics, this presentation will be far from ex-
haustive; its main goal is rather to introduce, in a pedagogical manner (as-
suming little or no prior knowledge), the important concepts and notations
that will be relevant throughout this thesis.

Compressive learning (CL) itself is then introduced in Section 2.5. This
explanation will be supported by the four root disciplines, each provid-
ing different and complementary "lens" through which CL can be inter-
preted. To give more concrete idea of the understanding we will be build-
ing towards throughout the entirety of this chapter, Figure 2.1 provides a
glimpse of the multiple intertwined interpretations that the root disciplines
provide.

In this chapter, several explanations are inspired by, and some figures
are even copied from, the accessible introductory paper on compressive

C COMPRESSIVE LEARNING is the trunk from which the diverse con-
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2 | Preliminaries: Flavors of Compressive Learning

Extending the theory of compressive sensing
to the space of distributions explains why compression
by a random linear operator is possible

The use of random features
allows to kernelize the space

We're trying to solve
a specific learning task

Sparsity is necessary to
regularise the inverse problem

Machine Learning lens \l 1 m \5 \/ : Signal Processing lens
- min || — E O(x;) — As(Po) ||
6co n T : Probability Measures
Data Synopses lens ] /1 i=1 O p ey 1
H ﬂ i xeometry lens
Compressive Learning
The use of a linear sketch We’re constructing a distance in the space of
makes compression especially efficient probability distributions;
for distributed or streaming data How well does it discriminate between distributions?

Fig. 2.1 The goal of this chapter is to progressively understand this fig-
ure. The grey box in the center contains the cornerstone formulation of
compressive learning (explained in Sec. 2.5). The four corners provide ex-
amples of insights that come from looking at this formulation through the
lens of the four root disciplines (introduced in Sec. 2.1 to 2.4).

learning [GCK20] we collaborated on. A few other parts are also inspired
by some publications related to this thesis; however the bulk of this chapter
(in terms of content and structure) is original.

2.1 Machine Learning

The ambition of compressive learning (and thus, of this thesis) is to solve
large-scale Machine Learning (ML) problems in a resource-efficient manner.
In Chapter 1, we loosely defined machine learning as the discipline that
turns some form of data into useful mathematical models by an automatic ex-
traction procedure. To make this definition more meaningful, let us pre-
cise those three ingredients. This will lead us to one particular! theory of
ML, called statistical learning (SL); see, for example, the textbooks [FHTO1,
SSBD14] or the shorter (but denser) introductory paper [Vap99]. This gen-
eral framework will not only be our guide in our subsequent exploration of
the machine learning landscape, but also serves as theoretical foundation

!While statistical learning is probably the most popular one, many other theoretical frame-
works for ML exist. There is currently a strong research interest for such alternatives, in the
hope of finally understanding the unreasonable efficiency of deep learning [ZBH17].
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for guarantees in CL (cfr. Section 2.5, Chapter 4).

Data (e.g., a dataset) The experience from which the machine learns takes,
most often?, the form of a dataset: a collection of multiple data points (that
we will also call "signals"), assumed to be representative of the data distri-
bution of interest. Mathematically, a dataset X is a multiset® of 1 learning
examples x1, x2, ..., x;,, which belong to some domain or signal space %, i.e.,

X:={xeX|i=1,..,n}. (2.1)

The signal space depends on the nature of the learning examples (e.g., &
could be a set of time series, of images, of text documents...). But very often,
the samples x; € R? are encoded by d-dimensional Euclidean vectors. For
the moment, we thus consider that ¥ = RY; we will come back to this
notion later, when discussing the notion of features.

Above, we stated that X shoud be "representative" of the "data of inter-
est". The implicit idea here is that there are other examples, not accessible
during training, for which our model should to be applicable: the goal is to
generalize on those unseen samples. To formalize this idea, statistical learn-
ing theory assumes that there exists a true data distribution* Py € M (%),
which is such that: (i) each element of the dataset is an independent and
identically distributed (i.i.d.) observation from that distribution, i.e.,

xl/ sy x}’l ~iid. 7)0! (22)

and (ii) the unknown samples we would like to generalize on also follow
this distribution®. As we will see, the formal goal of machine learning will
thus be to perform well on the true data distribution Py.

Mathematical models (e.g., a parameter vector) In ML, the goal is to find
a good model (or hypothesis). Models can serve a pleathora of purposes,
each one leading to different task families. For example, in the family of
supervised learning tasks, the model is a function fg : Xy — Xy : X — fp(X)

2Some branches of ML consider other types of experience than the "fixed dataset" pre-
sented here: e.g., in active learning [Set09], the algorithm starts with an empty or small dataset
which is progressively enriched by actively querying new samples; or in reinforcement learn-
ing [SB18], it receives informative feedback ("rewards") after performing sequences of actions.

3 A multiset is a set that can contain several instances (i.e., copies) of its elements.

* As will become clearer in Section 2.4, M (£) is the set of probability distributions on .

5Tf not, there is a distribution shift, which is a major issue in real-life machine learning.
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whose goal is to predict some target features of the data y; € X, from the
others ¥; € Xx (we subdivide the data vectorsas x = (¥,y) € & = Xx X &y,
with x the Cartesian product)®. This family can be further divided into
classification problems where the set of possible predictions is finite (e.g.,
fo : Xx — {1,...,K} where the K classes are labeled by indices 1, ..., K); or
regression problems where the output is continuous (e.g., fo : Xx — R). An-
other important family are unsupervised learning tasks, which seek to better
understand and/or represent the data. Existing compressive learning ap-
proaches, and this thesis, mostly focus on unsupervised tasks.

Despite those different purposes, almost all ML models are "parameter-
ized", i.e., they are fully described by some parameter vector 8, which lives
in a parameter space ®. A common setting is to have ® C R”, which means
that we have p real parameters to learn. The goal of ML is then to find the
model” 8 which best fits the data X; how precisely this happens is what
we explain next.

Automatic extraction (e.g., empirical risk minimization) In practice, the
optimization procedure that dictates which model best "fits" the data is
often crafted ad hoc for each specific task. However, the SL framework
proposes a unifying principle covering most practical cases. One first crafts
a loss function £ : £ x ® — R : (x,0) — £(x,0), which describes how good
the model 0 is for any possible data point x € X (a smaller loss indicates
a better fit). The ultimate goal in SL is then to find the model parameters
6" < O that minimize the risk objective R (6; Py) := Ey.p, £(x,0), i.e., the
expectation of the loss with respect to the data distribution Py € M! (2):

* i ; = in [E,. ,0). 2.
0 GargrerélélR(G,Po) argmin E, P, (x,0) (2.3)

This describes the ideal solution we would like to find. In practice, Py
is unknown, but the dataset X = {x;}! , provides n samples generated
from this distribution x; ~;;q. Pp. The “ideal” risk minimization (2.3) is
thus replaced by empirical risk minimization (ERM), which uses the empirical

Supervised (resp. unsupervised) learning is often defined by the presence (resp. absence)
of a separate label or “known output”. Here we rather focus on the intended goal of the model
(predictive versus explanatory), and abstract possible labels inside the data vectors.

"Mathematically, the model/hypothesis  is distinct from the parameter vector 6 that de-
scribes it, e.g., many different paramters 6 often equivalently describe the same model h.
However, in this presentation we found it convenient to abuse notations and keep this dis-
tinction implicit; we’ll often refer to a "model" as 6, the parameter vector that describe it. If
the relationship between 0 and / is many-to-one, we simply pick one solution 6 arbitrarily.
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distribution P v instead: with &, the Dirac delta at ¢, it is defined as®
Px = %Zzﬂ:l Ox;-

The ERM problem thus consists in finding the model 0 that minimizes the
average (over the dataset) of the loss function:

0carg Igéi(gl R(6; Py) = arg géig LY ex (x;,0). (2.4)

Learning guarantees Equipped with this general learning principle, we
would like to know whether or not, and under which conditions, it "suc-
ceeds": is the found solution 8 "good" enough on the true data distribution
Py? In other words, we would like to characterize its "true risk" R(6; Py),
or generalization error, which can be interpreted as the sum of two terms

R(6;Py) = R(6%;Po) + [R(6;Po) — R(6%;Py)]. (2.5)

The first term R (0*; Py), sometimes called the bias or approximation er-
ror, is the ideal, lowest possible risk that is achievable given our modeling
choices (by definition (2.3)). The second term R(6; Py) — R(6*;Py), often
called variance, estimation error, or excess risk, captures how much the prag-
matic ERM solution 8 is worse than the ideal one 6*. Once the machine
learning task and parameter space © have been chosen (see later), it is the
only term that can vary.

The goal of the game is thus to bound, or "control", this excess risk.
Note that, since the generation of the dataset is considered random (2.2),
the ERM solution 8 is also a random quantity”. The excess risk control is
thus necessarily probabilistic, and we seek statistical guarantees of the form

IP[R(8; Po) — R(6%;Py) < 1] >1-3. (2.6)

Probabilistic bounds of the type (2.6) guarantee Probably Approximately
Correct (PAC) learning'’: the learning procedure is allowed to commit a

8In’cuitively, the empirical distribution 75/? is the probability distribution associated with
the selection of one element from the dataset at random (more on this later).

9We can thus be unlucky and get a bad "draw": a dataset X that isn’t representative of ;.

10Statistical learning (as presented here) and (agnostic) PAC learning (omnipresent in ML
literature), are practically the same framework. The subtle distinction is that the usual PAC
learning framework [Val84] moreover explicitly considers the practical feasibility of learning, in
particular with respect to two aspects: the existence of a sufficiently small sample size n, and
the existence of a sufficiently efficient practical algorithm, such that (2.6) is satisfied [SSBD14].
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small error 7 > 0, as well as to fail with a probability 6 > 0 (the probability
is here over the draw of the dataset). Of course, the idea is then to show
that a given procedure is able to simultaneously achieve a small error 7
while having a small probability of failure é.

Bias-complexity tradeoff: under- and overfitting Formal learning guar-
antees can provide useful insights on the practical design of machine learn-
ing systems. A typical question is how much prior knowledge to incorpo-
rate into the model (here implicitly represented by the parameter space
©®). The answer to this question is given by the so-called bias-complexity
(or bias-variance) trade-off, which can be understood by inspecting the two
error contributions in (2.5). On one hand, to have a small bias error term
R(6%;Py), we should give the model as much freedom as possible, or put
differently, we should impose little to no prior knowledge (® should be
"large"). Indeed, if the considered model class is not rich enough, even the
best possible model 8" may not be able to fit the data well enough (we
have underfitting). On the other hand, to have a small variance (excess risk)
term R(6; Py) — R(0%;Py), we should impose as much prior knowledge
as possible. Indeed, for any finite sample size n and failure probability
6, statistical learning guarantees (2.6) typically predict that the excess risk
bound 7 increases with the "size" of the model set!! (we have overfitting).
We should thus impose some prior knowledge, but not too much.

One particularly convenient way to introduce prior knowledge is to
add a regularization term to the ERM cost function. This is usually done by
introducing a nonnegative penalty function p : ® — R4 : 0 — p(8), which
intuitively captures the "complexity" of the solution 6. To penalize compli-
cated solutions, p is added to the ERM cost. Problem (2.4) thus becomes

min R (6; Px) +Ap(8),
where the regularization strength A > 0 controls the relative importance
of the penalty function. Intuitively, increasing A increases "the amount of
prior knowledge", and it should thus be set according to the bias-complexity
trade-off'2. Note that beyond mitigating overfitting, regularization can
also help to numerically stabilize the optimization procedure [SSBD14]'3.

The classical notion of "size" is the Vapnik-Chervonenkis (VC) dimension [VC71].

12In practice however, exact knowledge trade-off is not available, so selecting A through
cross-validation is good practice.

13 As we will see, this is for example the case of linear ridge regression.
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What's left in this section Equipped with the lens of a unifying theo-
retical framework—statistical learning—we now present several practical
machine learning tasks and techniques. Obviously, we can only scratch the
surface of this gargantuan discipline, so we biased the inevitable sampling
of covered topics towards the concepts that are relevant to the following
chapters. The interested reader can learn more about machine learning
in general textbooks such as [FHTO01] (a good starting point), [SSBD14]
(focus on theoretical foundations, which served as main inspiration for
this section), [Mur12] (focus on probabilistic modeling of uncertainty, e.g.,
Bayesian methods), [SSBT02] (focus on kernel methods), [BGC17] (focus
on deep learning), and probably thousands of other excellent books.

Specifically, we first review the classical machine learning tasks: the
family of supervised tasks in Subsection 2.1.1, and the family of unsupervised
tasks in Subsection 2.1.5 (includes k-means and Gaussian mixture model-
ing, two tasks of particular importance in this thesis). Those problems are
presented in their "linear" version, i.e., the target model somehow operates
"directly” in the Euclidean space of the data samples x;. This is an im-
portant limitation, and many ML models thus work on "features", a trans-
formed version of data ®(x;). We review the two main paradigms for cre-
ating features: neural network methods in Subsection 2.1.2, and kernel methods
in Subsection 2.1.3. Finally, in Subsection 2.1.4, we review random features
constructions, a technique initially proposed to speed up kernel methods,
and one of fundamental building blocks in compressive learning.

2.1.1 Linear supervised tasks

The goal of supervised learning tasks is to make predictions on unseen
data. Recalling our subdivision of data vectors x = (¥,y) € X into inputs
X € Yy and a target y € ¥y, this prediction rule takes the form of a param-
eterized function fp : Xz — X,. Loosely speaking, our goal is to achieve

fo(X) ~y forany x= (X,y) where x~ P. (2.7)

More formally, given a function D : &, x ¥y +— R that captures the dissim-
ilarity between any prediction and its target, the associated loss is

{(x,0) = £((%,y),0) = D(fo(x),y), (2.8)
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and generic statistical learning formulation of supervised learning is thus

0 € argmin ) D(fo(%), i) + Ap(0). (2.9)

xiEX

In this subsection, we focus on the class of linear prediction functions,

i.e., which rely on the linear transformation'* (0,%) = 0'x = 2?21 0;%;,
where the parameter vector # € R? must be tuned (with d < d the di-
mension of x). In general, linear prediction functions can thus be written
fo(%) = g({6,%)), where g : R — X, is an (optional) fixed mapping.

Linear regression problems In usual regression problems, the target is
a single continuous attribute, i.e., y; € £, = R (we thus have the input
dimension d = d — 1), and g is the identity, i.e., fg(¥) = (6,%). To fully
specify the problem, it remains to pick the dissimilarity measure D and
the (optional) regularization function p; we discuss a few common choices
below.

The simplest and most common regression problem is without doubt
linear least-squares, where the "dissimilarity" D is the squared difference
D(y,y") = (y — v')?, i.e., the empirical risk is the mean squared error. Intro-
ducing the matrix notation X = [¥y,..,%,] € R*" and y = [y1, ..., yn] " €
IR", the linear least-squares problem (without regularization) reads

n
0 =argmin ) _(0'%; — y;)* = argmin ||YT9 — 3. (2.10)
0eR? ;=1 9

The well-known closed-form solution to this problem is 8 = (X x") “1Xy.
Note that this expression requires the empirical covariance matrix XX' to
be invertible: if it is not the case (i.e., the samples ¥; do not span the whole
space IR?), one can still solve for @ by resorting to the singular value decom-
position [SSBD14]. Another possibility to avoid this issue is to stabilize the
problem by adding regularization.

The simplest regularization penalty, sometimes called Tikhonov regu-
larization!®, is the squared ¢, norm of the parameter vector, i.e., p(ﬂ) =

41n fact, linear predictors rather typically consider the affine transformation Y, 0;%; + b for
some bias term b € IR, but to simplify computations, a common trick is to incorporate b into
the scalar product by adding a dummy dimension to ¥ which is always equal to one.

51n fact, Tikhonov regularization is slightly more general, as it allows to use a weighted
norm, e.g., ||6]|2 := 67 T8 for some positive definite matrix I; in our case I is the identity I
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0|3 = ¥ 6>. When associated with the previous linear least-squares rule,
this problem is known as the (linear) Ridge Regression problem

n

~ . _ . <1

6 = arg min Y (0% —yi)* + Ap(6) = argmin|[IX 60— y[[3+ A|10]3,
€ =1

2.11)

and the closed-form solution becomes
0= (XX +AL) 'Xy. (2.12)

Notice that when A > 0, the matrix XX + AL is always invertible.
This is known as the primal form of the ridge regression solution, which
involves inverting a d-by-d matrix (which takes (’)(32) space and (’)(33)
time). By analyzing the dual optimization, or by applying a matrix inver-
sion lemma’®, the solution 6 can also be written in the so-called dual form,

0= Y(YTX—F ML) ly =Xa with a:= (YTY—F ALty € R™
(2.13)

Notice that in this case, the matrix to invert is of size n-by-n, which is more
efficient to compute when there are less data points than the input dimen-
sion (O(n?) space and O(n?) time). Another advantage of this form is that
it involves the data samples only in the form of dot products: the vector «
requires the Gram matrix K = X ' X which has entries K;; = (x;,%;), and
the linear predictor requires to evaluate f5(x') = 8y = Yo (X, x).
This fact will be particularly important in the context of kernel methods.

Another popular regularization term, which will play an important role
in the next section, is the /1 norm of the parameter vector, i.e., p(0) =
l6]1 = Y_; |6;|. This defines the Lasso problem:

0 =argmin | X6 — y[3 + All6]|:. (2.14)
R4

While the Lasso problem doesn’t have a closed-form solution, and is not
even differentiable, it is still a convex optimization program, for which ef-
ficient solvers exist (e.g., subgradient and proximal methods [PB14]). The

16The lemma in question, which follows from equating two ways to perform blockwise
matrix inversion (the same trick that gives the famous Woodbury matrix identity), is that
for conformable matrices A, B, C, D, one has (A — BD’lC)*lBD*1 = A’lB(D — CAle)’l,
which we here apply to A = A3, B = CT'=Xand D = —1I,.

| 21



2 | Preliminaries: Flavors of Compressive Learning

{1 penalty is here particularly interesting because it encourages a sparse so-
lution vector 6, i.e., with only a few nonzero entries (more about sparsity in
the next section). Among others, this makes the model more interpretable,
because the prediction rule is based on only a small subset of the possible
data features (the Lasso incoporates feature selection into the problem).

The data fidelity term (the ERM component of the optimization) was the
squared ¢ norm of the error X'o-— y, i.e., the dissimilarity is D(y,y') =
(y —y')%. One way to understand the popularity of this loss is through
the Bayesian interpretation of (2.9), which can be seen as (the negative log
of) a Maximum A Posteriori (MAP) estimation of 8, where the likelihood
term is given by p(X'[0) « exp(—Y;D(¥;'0,y;)) and the prior distribu-
tion is p(6) o« exp(—Ap(0)); see [Murl2] for an in-depth exploration of
this paradigm. The squared loss then corresponds to assuming the "ob-
servations" y; ~ x; 0 are corrupted by Gaussian noise, which is ubiquitous
in nature (e.g., think of the central limit theorem), which explains why the
squared loss is very often a good choice.

However, depending on the application, other choices of data fidelity
can be more adequate. One popular alternative is the absolute deviation
D(y,y") = |y — |, which leads to an ERM term equal to the /1 norm the
errors HYT(-) — y/||1. This choice is typically more robust to outliers, and is
suitable to cases where data corruption may be important. In the proba-
bilistic interpretation, it corresponds to assuming the observations are cor-

rupted by Laplacian noise, i.e., random variables distributed with density
le]

pe(e) o exp(—72)-

Linear classification problems We now turn to linear classification prob-
lems, where the labels y; € ¥, are from a discrete set representing C = |Z, |
distinct classes, i.e., y; # y; iff x; and X; belong to different classes. Our lin-
ear prediction function, f¢(X) = ¢((6,%)), now involvesamap ¢ : R — %,
whose goal is to map the (real-valued) linear term (6, X) to a discrete class.
The natural goal in this setting is then to minimize the amount of classi-
fication errors. In our SL framework, this means picking the dissimilarity
D(y,y') = 1(y #v'), with ((A) the indicator function of event A (equal to 1
if A is true and 0 otherwise). The associated loss, often called the 0-1 loss,
is a binary value equal to one iff a classification error was committed:

t(x,0) = u(fo(x) #y) € {0,1},
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and the related empirical risk is the average number of such errors.

Let us first focus on the case of binary classification, for which the space
of labels is often encoded as X, = {—1,+1} (we have a "positive" and a
"negative" class). The obvious way to map (6, %) to X, is to keep only the
sign (i.e., ¢ = sign), which leads to the halfspace classifier:

fo(¥) =sign ((6,%)) € {£1},
and the related empirical risk minimization rule reads

n

8 cargmin ~ ) i(sign ((6,%)) # ) (2.15)
0cRI 1 ;[ 5

How can we solve this classification problem? In the linearly separable
case, where there exists a hyperplane that separates the two classes (in other
words, the optimal value of problem (2.15) is zero), there exist efficient
algorithms, such as Rosenblatt’s celebrated perceptron algorithm [Ros58].
However, the linearly separable case is not that common in practice, and
without this assumption (in the agnostic case) no efficient algorithms exist
(the problem in fact becomes NP-hard [BDELO3]).

While the 0-1 loss and the halfspace predictor are the most natural
given the nature of the classification problem, they are thus rarely used by
ML practitioners, which tend to prefer convex and/or differentiable maps
instead. In particular, we present two commonly used surrogates for the
0-1 loss function: the logistic loss (which leads to classifier known as logis-
tic regression) and the hinge loss (which leads to the classifier known as
support vector machines).

Intuitively, the halfspace classifier is difficult to train because its predic-
tions, which are binary values, are not very informative: when the model
is wrong on a given example, we do not know exactly to what extent it is
wrong. If the model would output a degree of certainty of its prediction,
we could penalize errors more or less severely, according to its confidence
in the wrong answer. The standard way to incorporate such a mechanism
is to have the model make a probabilistic prediction, i.e., for classification
with C classes, a vector in the probability simplex!” fg : £z — Ac 1= {a €
RS, Y a, = 1}

In the case of binary classification (our focus here), this can be sim-

7The loss should then be defined as a distance (or divergence) over the probability simplex
(more on this in Section 2.4); the most popular is the cross-entropy loss.
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plified to a single scalar output, i.e., the linear transformation is mapped
through some map g : R — [0, 1] (e.g., the sigmoid function), whose output
can be associated with the probability that the predicted class is positive.
When the sigmoid map is combined with the so-called logistic loss'®, we
obtain the logistic regression task, whose loss function reads [SSBD14]

t((x,y),0) = log(1 +exp(—y(6,%)))-

To interpret this expression, one can note that it is a (convex) decreasing
function of the term y(6, ), which increases whenever the prediction be-
comes more accurate (in particular, if y(6,%) > 0 then the prediction is
correct).

Our other classification scheme of interest, Support Vector Machines
(SVM), is similar in that its loss is also a (convex) decreasing function of
y(6,%): the hinge loss reads

(((*%,y);0) = max(0,1 —y(6,x)),

and the SVM learning problem, which considers Tikhonov regularization,
is
0c argmin,_p7 Yi'; max(0,1—y;(6,%;)) + All6]3. (2.16)
The hinge loss is similar to the logistic loss (linearly decreasing on the left,
constant at zero on the right), except that the "kink" is offset by one to the
right: intuitively, this forces the model to maximize the "margin", i.e., the
distance of the correctly classified samples to the decision boundary.
For reasons that will become clear in a moment, SVM is often formu-
lated in the "dual" form, where the parameter vector 8 € R? are rewritten'’
as 0 = Y ; a;y;X;; the « € R", are known as the "dual variables" [SSBD14].

2.1.2 Nonlinear models, features, and neural networks

Remark 2.1. From now on the distinction between input features ¥ € X5
and data vectors x € ¥ (which may include labels) will be of marginal
importance, so to avoid heavy expressions, whenever the meaning is un-
ambiguous from the context, we abuse notation and denote both by x € X.

Although we have seen that they come in many flavors, linear models

18Which is actually equivalent to the cross-entropy loss for the case of binary predictions.

19This decomposition of the ERM solution as a linear combination of the input samples is
allowed due to a general result known as the representer theorem [SHS01]. As a side note, the
"Support Vectors" are the samples ¥; that contribute to the solution, i.e., such that a; # 0.
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are rather simple: geometrically, the prediction surface (for regression) or
decision boundary (for classification) will always be a hyperplane in the in-
put space Xz. This simplicity has the advantage of making linear models
efficient to learn and relatively easy analyze, but is also a severe limita-
tion given the highly nonlinear nature of many real-world phenomena. In
terms of risk (2.5) they tend to have a high bias, except for a minority of
well-behaved cases. Most interesting machine learning models are thus
nonlinear.

To do so, virtually all nonlinear models in fact "inject”" nonlinearity into
one of the linear models seen above, by adding a nonlinear data trans-
formation, called feature map, prior to the linear relationship. For super-
vised learning specifically, the ML designer "crafts" a nonlinear feature
map ¢ : Xz — &, for some relevant m-dimensional feature space £, and
the linear model fy(-) : £ — X, then operates in this augmented space; the
resulting nonlinear model is fg(¢(x)). The hope is that by mapping all the
data vectors x; in the feature space representation ¢(x;) € &, the relevant
signal structure is better exhibited, such that the problem becomes "easier"
to solve, in the sense that a simple linear model in £ performs well (e.g.,
the classes become linearly separable under the map ¢).

The simplest illustration of this idea is probably the class of polynomial
models. In dimension d = 1, a polynomial fg(x) of degree p can be written

fo(x) = 0+ 01x + 0% + ... + 0,pxF = 0 (1,x,x%..,x7) =0 ¢(x),

so that fg(x) is a linear map in the augmented space defined by ¢ : R —
R™: x + (1,x,x2, ..., xP) with embedding dimension m = p + 1. In higher
input dimensions d, the same trick can be applied, and ¢ contains all pos-
sible monomials terms x]' - x5? - ... - xgd corresponding to any combina-
tion of exponents p; > 0 such that } ; p; < p. Any of the linear models
above can thus easily be transformed into a polynomial model, by simply
replacing the data matrix X = [xq, ..., x,] € R?*" by the feature matrix*’
D = [p(x1),...,¢(xn)] € R

Remark 2.2. Often, the input dimension d is quite large; since the mono-
mial feature map has a combinatorially large embedding dimension m =
(? +Zfl) [SSBT02], the polynomial model is not computationally tractable,
even for low-degree polynomials. In general, although we do not explic-
itly focus on this aspect here, note that learning from high-dimensional

20For the 1-d polynomial model, @ is called the (transposed) Vandermonde matrix.
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data is quite challenging—due to the curse of dimensionality (e.g., Euclidean
distances are less "comparable" in higher dimensions). Besides the exhibi-
tion of nonlinear relationships, one often also incorporates dimensionality
reduction aspects into the feature map ¢.

With the notable exception of the polynomial model (in moderate di-
mension) and a few other simple cases, the design of the feature map ¢ is
in general a critical yet non-trivial problem: how to ensure that ¢ correctly
unfolds a nonlinear data geometry that is, most often, not well understood
by the ML designers themselves? Instead of hand-crafting the features ad
hoc, modern designers usually turn to one of two general recipes: neural
networks (now briefly explained, for the sake of completeness), and kernel
methods (introduced in the next subsection, more relevant to this thesis).

Neural networks are incredibly popular nowadays, which implies that
they come in thousands of different flavors, but their common theme is the
following: (i) the feature map ¢ = ¢(®) is parameterized and learned along
with the subsequent linear model fp, (-) = g((0r,-)) (called the "output
layer") during the training phase; and (ii) the feature map is itself com-
posed of L — 1 successive "layers" that combine a linear mapping 6, fol-
lowed by a point-wise nonlinearity ¢ (e.g., the sigmoid or ReLU activa-
tions): the end-to-end model reads

Fo(x) := fo, (¢'? (x)) = g(6 0(6]_10(---0 (6] x)))).

This general architecture can then be injected into one of the linear tasks
described above. Although deep neural network often have an unreason-
ably large amount of tunable parameters (i.e., they are over-parameterized),
it turns out that they are very successful in practice, for reasons that are
not yet completely clear to the research community. We refer the interested
reader to (among others) the textbook [BGC17] for a complete description
of deep learning, and now turn to kernel methods.

Remark 2.3. One can draw many connections between neural networks and
kernel methods (as suggested here by presenting them as two particular
cases of feature extraction); some researchers consider kernel methods to
be a particular case of neural networks, while in the converse direction
other researchers consider that neural network are a specific approxima-
tion to kernel methods (e.g., following the neural tangent kernel line of
work [JGH18]).
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2.1.3 Kernel methods

The desired property of the feature map ¢ : £ — & is to somehow dis-
tort the space X such that the relevant (nonlinear) relationships between
data samples are encoded in the "natural geometry" of £. Intuitively, if
two samples x and x” are semantically different for the target task, then the
distance between their features ¢(x) and ¢(x") should be "large". Equiva-
lently, the geometry in the feature space is characterized by the dot product
(p(x),p(x")), which should encode a meaningful similarity between x and
x'.

The high-level idea of kernel methods [SSBT02] is to directly specify
this dot product (¢(x), ¢(x’)), rather than the feature map ¢. More specifi-
cally, the ML designer specifies a kernel function x : £ x £ — R : (x,x')
k(x,x") that encodes a relevant similarity criterion between any data vec-
tors x and x’. While this function represents the dot product in the feature
space, i.e., k(x,x") = (p(x),@(x')), the feature map ¢ is however implicit, in
the sense that its precise expression is irrelevant to the learning model.

Part of the appeal of kernel methods is that this construction principle
is quite flexible. On complicated data domains, where it might be challeng-
ing to craft a relevant feature map ¢, it is often still possible to directly spec-
ify a meaningful notion of "similarity" «; in other words, kernels are a great
way to incorporate prior knowledge into the model. For example, many nat-
ural similarities can be defined over the domain of text strings [LSST02],
graph data [BGLL'20], and structured domains in general [Gar03].

Elements of kernel theory The other main advantage of kernel methods
is their well-understood theoretical properties. While a thorough presen-
tation of this theory is beyond the scope of this manuscript (we refer once
again the reader to [SSBT02] for this), we present here its main ingredi-
ents, which will support key aspects of this thesis. We begin by formally
defining the notion of kernel, and that of positive definite (p.d.) kernel in
particular (virtually all kernels used in ML are positive definite; they are
sometimes called "valid" kernels).

Definition 2.4 (Kernel). A kernel is a map « : £ x £ — C which is conju-
gate symmetric, i.e.,

k(x,x') =x(x,x)*, Vx,x eX
In the vast majority of machine learning applications, the kernel is real-
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valued, i.e., k : £ x ¥ — R which is simply symmetric x(x, x") = x(x/, x).

Definition 2.5 (Positive definite (p.d.) kernel). A kernel « is positive definite

(or valid) if, for any number n € IN, any n-by-n Gram matrix K (i.e., which

has entries Kj; = w(x;, x]-)) is positive definite, which is equivalent to ask
szzl cic}*K(xl-, xj) >0, Vxi,...,x, €Xandcy,...,cn €C.

Intuitively, positive definiteness of the kernel is important because it
ensures that it can indeed be interpreted as a valid dot product. To be
more specific, if the kernel is p.d., then we know that it can be associated
with a (possibly implicit) feature map ¢ : £ — H, for some Hilbert space?!
Hy, such that k(x, x’) = (p(x), @(x')) %, -

The attentive reader will have noticed that this space H, is actually
nothing but the "feature space" £ that we defined above, but it gets a fancy
notation—as well as a fancy name, the Reproducing Kernel Hilbert Space
(RKHS)—because it enjoys some remarkable properties [Aro50].

Definition 2.6 (RKHS). If x : ¥ x X — C is a p.d. kernel, it is uniquely22
associated with a Hilbert space Hy of functions, called Reproducing Kernel
Hilbert Space, that satisfies the two following properties:

1. Vx € &, k(- x) € Hy;
2. (Reproducing property) Vf € Hy, f(x) = (f(-), k(- %)),

Another (maybe less abstract) way to describe the RKHS # associated
with a kernel « is that it is the (complete) linear span of that kernel:

Hy :=span ({x(x,-) | x € £}), (2.17)

where A denotes the closure of the set A.

Looking at (2.17), we can intuitively think of the RKHS as the set of
functions f that can be expressed as a linear combination of shifted copies
of the the kernel, i.e., f(-) = Y; a;jx(-, a;) for some weights «; and positions
a; € X. Note that, the RKHS being a space of functions, the features of any
data sample x are also a function; we can in fact write ¢(x) = x(-, x) € H.
As we will now see, in kernel methods, the RKHS determines the space of
possible models, i.e., fo(-) € H.

Antuitively, a Hilbert space H is simply any space that is equipped with a dot product
(-, -)u, and that is complete (which allows to take limits in this space).
22The unicity of the RKHS is a result known as the Moore-Aronszajin theorem [Aro50].
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The representer theorem and the kernel trick At this point, one impor-
tant question might come up to the reader’s mind: how can we possibly
learn models from kernels? Following our "featurization" strategy from
Subsection 2.1.2, the model is linear in the feature space, so (with some
waving of the hands) we should write something like fg(x) = (6, ¢(x))%, -
However, # is a functional space, which means that 0 = 6(-) € H, is here
a function, living in an infinite-dimensional space, which is obviously not
really practical. The solution to this issue comes from the representer theo-
rem, which roughly speaking allows to write the optimal "parameter vector"
6—the minimizer to a learning problem involving a dataset X' = {xi b —
as a linear combination of the learning examples in the feature space: one
could write & = Y a;¢(x;). When plugged into the model f;, we obtain
that the optimal model will always be of the form

fo(x) = Lily wile(xi), (%)), = Lily wire(xi, x)-

Crucially, instead of solving for an infinite-dimensional parameter vector 6
(the primal variables), we can solve instead for « € R” (the dual variables).

The informal argument we just described is a (very hand-wavy) jus-
tification of a general principle known as the kernel trick: any machine
learning algorithm that can be formulated only in terms of dot products
with the learning examples (-, x;) (e.g., using the representer theorem) can
be "kernelized" (i.e., solved into a RKHS instead of the input space) by re-
placing those dot products with kernel evaluations «(-, x;) instead. The
kernel trick is the basis building block of any kernel method, which are all
built from pairwise kernel evaluations #(x;, x]-) (where x;, x; are elements
of the training set)?3, as well as (during the inference stage) evaluations
on newly observed samples x(x;, x). We illustrate this principle by two
practical examples below.

Two common kernel methods One of the most popular kernel methods
is Kernel Ridge Regression (KRR). Recalling the dual formulation of usual
ridge regression (2.13), the kernelized version reads [SGV98]

n
fo(x) =Y wix(x;,x) with a:= (K+ ALty € R (2.18)
i=1

For the classification problem, the most famous kernel method is kernel

ZUsually gathered into the Gram matrix K € R"*", whose has entries are K; = x(x;,%;).
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SVM. Recall that in this case, we also had an expression of the solution in
terms of dual variables &, and (omitting some aspects that are irrelevant to
our discussion) the classifier is written as f(x) = sign ( i Yk (x, x))
The coefficients « are the solution to the dual of the SVM problem (2.16), a
quadratic optimization program [SSB*02]:

a = argmaxo<g<ct Y Bi — 3 Lij Bivik(xi, X;)YiBj, (2.19)

where the hyperparameter C = ﬁ is inversely proportional to the regu-
larization strength.

Some general-purpose kernels One last aspect we still have to discuss is
how exactly to pick the kernel (i.e., the "similarity") x. As mentioned above,
many kernels exists in the literature, each tailored to specific data domains
and prior knowledge; if applicable, it might thus be worth seeking a kernel
adapted to the problem at hand. However, some "general-purpose" kernels
also exist, usually defined over the Euclidean space & = R

A first popular kernel is the polynomial kernel x(x,x") = ((x,x) +c)?,
for some degree p and bias c. It can be associated with an (implicit) poly-
nomial feature map (which we used as example to introduce the notion of
features).

The most popular kernel of all time is probably the Gaussian kernel, of-
ten called "the" radial basis function (RBF) kernel (although other types of
RBF exist). It is defined, given some scale parameter o > 0, as

12
_ lx —x Hz) = (x— %),

k(x,x') = exp ( 572

where on the right we define the function ¥* : X — X — R : u — «*(u) =
e~ lulz/20% 1n general, kernels that can be written in this way, ie., as a
function of the difference of the inputs x(x,x") = x*(u := x — x’), are called
shift-invariant (or stationary) kernels; shift-invariant kernels are a popular
class of kernels, that play a special role in the next subsection. As another
example of shift-invariant kernel, we have the Laplace kernel, similar to
the Gaussian kernel but involving the ¢; distance, i.e., k*(u) = e~ lulh/ gor

some scale T > 0.
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2.1.4 Random features

The kernel trick is quite powerful, as it allows to learn functions f in an
infinite-dimensional feature space (H,), when they can be written as a linear
combination of the kernel evaluated at the learning samples, ie., f(-) =
Y. aik (-, x;). However, this same sentence also highlights the crucial weak-
ness of kernel methods: they are parameterized by a dual vector ¥ € R”
that has the same size as the number of learning examples n. Even worse, ker-
nel methods (i.e., algorithms to find &) typically involve the Gram matrix
K € R™", which takes O(n?) memory to store, and (e.g., if we want to
solve KRR) O(n®) operations to invert. When the number of samples n
is very large (as in modern large-scale machine learning), kernel methods
are thus not computationally tractable, which explains (among numerous
reasons) why neural networks are nowadays the preferred solution.

To circumvent this issue, several approximation strategies to kernel
methods were proposed. The two most popular approaches are the Nys-
trom method and random Fourier features. In a nutshell, the idea of Nys-
trom method is to subsample m < n data points ¥; from the full dataset
X, and to construct a low-rank approximation to the Gram matrix based
on those points. Roughly speaking, the idea is still to use the kernel trick,
but to use it on a smaller amount of samples (i.e., to use a restricted set of
m kernel evaluations (-, %;) instead of the full n evaluations «(-, x;)). This
approach recently showed state-of-the-art performance on massive-scale
datasets [MCRR20].

In contrast, random Fourier features (RFF) [RR08], abandon the kernel
trick (i.e., the idea to work implicitly in an infinite-dimensional RKHS H,),
and construct instead (in a way we explain below) an explicit feature map
® : X — C" of finite dimension, that approximates the kernel (i.e., the dot
product in Hy):

(@(x), @(x'))2 ~ x(x, ) = ((x),(x)) 3,

Because with RFF we have explicit access to the features ®(x), one can
directly kernelize any machine learning technique by replacing x by ®(x)
(or in general, the data matrix X = [xy, ..., x,] by the random features ma-
trix ® = [®(xq1),..., D(x,)]), even when they do not directly appear in a
dot product. To illustrate the advantage of this approach, take the exam-
ple of KRR: with RFF we can once again solve the problem in its primal
form (2.12). Note that this formulation relies on the (feature) covariance
matrix ®® ' € C"*", while the dual form relies on the Gram matrix
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K € €™, which thus greatly reduces the computational complexity when
m <L n.

Nystrom methods and random Fourier features were extensively com-
pared in [YLM™12]. As reported in this work, Nystrom methods tend to
perform better (given a number of "features" m), but one has to keep in
mind that such methods have access to the dataset when the approxima-
tion is constructed. On the other hand, random Fourier features are data-
independent: they seek to approximate the kernel uniformly over a target
domain. This fact is particularly important in the context of compressive
learning (Section 2.5), where we design the sketch operator before access-
ing the data.

Constructing the Random Fourier features Random Fourier features rely
on Bochner’s theorem [Rud62], which allows to write any p.d. shift-invariant®*
continuous kernel® x(x,y) = x*(x — y) as the (inverse) Fourier transform

of a probability measure A, i.e.,

T

K2 () = (FIA) () = [ra @9 *dA(w) = Egonp e . (2.20)

The key idea of random Fourier features [RR08], illustrated by Fig. 2.2,
is thus to construct finite-dimensional features ®(x), ®(x’) whose inner
product approximates the kernel x(x, x') by Monte Carlo sampling of this
expectation. Specifically, given a target shift-invariant kernel x*(x — x')
with Fourier transform A = Fx%, we construct m-dimensional random
Fourier feature map as

P(x) := ﬁ exp(i'x) €C™, (2.21)
with random projections (or “frequencies”) Q := (wy, -+ ,wy) € R

generated as (0 ~ A", ie, with w; ~j;q. A forj =1,..,m. Indeed, by
direct application of Bochner’s theorem (2.20), the inner product of RFF
approaches (in expectation over the draw of the frequencies ) the target
kernel: denoting the approximatation x(x, x') := (®(x), ®(x')), we have

Ex(x,x') = % Z}"zl ]Ew]. A ) ©(x,x').

24 Although they mostly focus on shift-invariant kernels, random features can also approx-
imate more general kernels, see e.g., [Bac17, LHCS20].
%5 Assuming w.l.0.g. the normalization x(x, x) = x*(0) = 1.
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Direct domain Frequency domain

Fig. 2.2 RFF principle. Bochner’s theorem (top) states that a shift-
invariant kernel x(x,x") = x*(x — x’) (left, black) can be expressed in the
Fourier domain as a probability distribution A(w) (right, black). The idea
of random Fourier features is to sample m "frequencies” w; ~j;4. A, which
defines an empirical probability distribution Pa = 1 Z;”Zl dw; (right, red).
The kernel ¥ computed by the random Fourier features map ® in (2.21) is
then the inverse Fourier transform of this empirical distribution (left, red),
and approximates the original kernel «.

As we explain in Chapter 3, one can also give a precise bound on the ap-
proximation error commited by RFF, which gives an idea of the required
amount of features m.

Since Rahimi and Recht introduced the technique in [RR08], random
Fourier features have been intensely studied. For a recent overview of this
rapidly growing field, we refer the reader to the literature reviews [LHCS20]
and [LTOS19].

2.1.5 Unsupervised tasks

So far, we focused (in Subsection 2.1.1) on supervised learning tasks, i.e.,
"prediction" tasks such as classification and regression. In fact, most of the
tasks considered in this thesis belong to the family of unsupervised learning.
Due to the absence of target "labels", the goal of unsupervised tasks tend to
be less clearly defined, but usually combine at least one (and often both) of
the two following generic objectives: understanding the data by represent-
ing it by a simple model (e.g., discovering natural clusters in the data); and
representing the data more adequately (e.g., in a smaller dimension).

Remark 2.7. The general technique of capturing nonlinear relationships by
a feature map ¢ : X — £, which we explored in Subsections 2.1.2 to 2.1.4,
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are not specific to supervised learning. Unsupervised learning also makes
use of nonlinear features (both learned as in neural networks, and fixed as
in kernel methods).

In this section, we look at a shortlist of some unsupervised learning
tasks of interest, with a particular focus for k-means and Gaussian mixture
modeling, two tasks of specific interest in this thesis. We will cast those
tasks in the SL framework, which we recall here for convenience. Given
n examples x; € X, a model parameterized by 8 € ©, and a loss function
{(x, 0) characterizing the "fitness" of the model 6 on any data vector x, the
goal of SL is to minimize the empirical risk:

0 inR(6;Py) = inly. _./(x;0).
€ arg min (6;Px) argmin ; ¥ e x (x;,0)

We find it useful to arbitrarily classify the tasks presented here into two
broad families: linear decomposition tasks (e.g., PCA, k-means) and density
fitting tasks (e.g., Gaussian mixture modeling, generative networks).

Linear decomposition tasks

We define linear decomposition tasks, or "matrix factorization-like" tasks,
as seeking to express, or "explain”, the learning examples x; € R? as a
linear combination of K factors f, € R?, where their weights g, depend
(possibly nonlinearly) on the learning example:

X YR a(x) fe =Lk g’((e) (i) - ;(Ce)~ (2.22)

In order to have a proper learning problem, at least the factors f, or the
weights g, are parameterized by tunable parameters 6, as denoted by the
superscript (). To formalize this learning problem, we define a dissimilar-
ity function D : X x ¥ — R such that ¢(x, 0) = D(x, Y_; gx(x) f;) captures
the "error" committed by the linear decomposition. The generic linear de-
composition task is thus written in the SL framework as

0c arg%nin Z D(xi, 25:1 gz((e) (xi)fl(ce))'
€O x,EX

This problem might seem a bit abstract for now, but as we will see, it
unifies several classical learning tasks.

Principal Component Analysis In Principal Component Analysis (PCA),
the goal is to find the K-dimensional subspace that best "fits" the data, or as
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commonly formulated, that captures most of its variance. Formulating this
in our linear decomposition framework, the "factors" f; form the orthonor-
mal basis of a K-dimensional subspace which must be learned. Gathering
those basis vectors into a matrix F = [f},.., fx] € R¥*K, we thus have
to learn 0 := F under the constraint that F is an orthonormal basis, i.e.,
F'F = Ix (which defines the set ®). Moreover, the linear decomposition
Yk 8k (x) f is defined to be the orthogonal projection of x onto that subspace,
that is, gx(x) := (x, f;). Finally, in PCA the loss is defined by the squared
distance D(u,v) := |ju — v||3, or geometrically, ¢(x, 0) is the (squared) dis-
tance of x to the subspace spanned by the f,. Combining these design
choices yields (one of) the (many) usual formulation(s) of PCA:

F € argmin Yo lxi— FF"x;||3 = argmin | X — FF' X3,

FERPK, xeX FTF=Ig
F'F=Ig
with X € R?*" the data matrix and || - || the Frobenius norm. It is well-

known that the solution to PCA is given by the top K eigenvectors of the
data covariance matrix XX ' (e.g., owing to the Eckart-Young theorem).

Clustering (k-means) Another popular linear decomposition task is centroid-
based clustering. Here, the "factors”" f, = ci are called centroids, and the
goal is to find a set of centroids, 6 := C = {¢; € le}f:l, that are "rep-
resentative” of clusters in the data. To do this, each data sample is associ-
ated to its "closest" centroid (according to a metric D) by binary weights

8k(x) € {0,1}:

u(x) = {1 if k = argminy, D(x, cy),
0 else.

In terms of statistical learning, the loss ¢(x, 8) = min;<x<x D(x, ¢x) is thus

simply the closest distance from x to a point in C.

For example, when D(u,v) = ||lu — v||; is the ¢; distance, we obtain
k-medians clustering. A more common choice is D(u,v) = |u — v||3 the
squared Euclidean distance, which yields the famous k-means clustering
problem [Ste56], widely used in, e.g., data compression, pattern recogni-
tion, and bioinformatics [Jail0, Ste06]. To be perfectly clear, given K a
prescribed number of clusters (groups of similar data), k-means cluster-
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ing seeks the centroids C = {¢; € R‘}X | minimizing the Sum of Squared
Errors (SSE, the "error" is the distance between each sample x; and the cen-
troid closest to it):

C € argmin Y min [lx; — |3 =: argmin SSE(C; X). (2.23)
C x€X 1<k<K C

Solving (2.23) exactly is NP-hard [ADHP09], so in practice a tractable heuris-
tic such as the popular k-means algorithm [L1082, AV07] is widely used to
find an approximate solution Cyy. The idea behind the k-means algorithm
is to observe that the problem can be broken down into two much eas-
ier subproblems: if the cluster assignement are fixed (i.e., each data point x; is
assigned to one index k), the optimal centroids are simply found by averag-
ing their respective cluster; while if the centroids are fixed, the optimal clus-
ter assignment is obviously to assign each sample to its closest centroid.
Instead of solving both subproblems at once (which is hard), k-means thus
alternates between solving each of them in turn (in a block coordinate de-
scent style). This local search method is not guaranteed to find the opti-
mal solution, but when combined with (possibly several trials of) a careful
initialization [AV07], it performs well enough in practice to be the most
widely used method [Jail0].

Note however that the complexity of k-means scales poorly with the
size of modern voluminous datasets, where 7 is typically at least O(10° —
10°), or even grows continually as in data streams (see Section 2.3). In
fact, since k-means repeatedly requires—at each iteration—a thorough pass
over X, this massive dataset must be stored and read several times, with
prohibitive memory and time consumption. Efficient implementations on
large-scale data exist, but require dedicated GPUs [JD]19]. Paradoxically,
the large dataset size (i.e., dn) dwarfs, and does not affect, the number of
parameters learned by k-means (i.e., dK). Ideally, larger datasets increase the
model accuracy without requiring more training computational resources. This
motivates the use of compressive learning for the k-means problem (see
Section 2.5).

Density Fitting
In density fitting tasks, the goal is to somehow approximate the true data

probability density Py; which we access only through the empirical dis-
tribution Py. One thus seeks a parameterized probability distribution Py
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that is somehow "close"?® to Py. We discuss here two ways to construct
this distribution: as a mixture of simple parametric distributions, or as a
generative neural network.

(Gaussian) mixture models A mixture model is defined by K components,
which are "simple" distributions pg, parameterized by 0y, that are linearly
combined, with weights w; > 0 that sum to one w'1 = 1. The proba-
bilistic interpretation of a mixture model is that the weights w; model the
probability that a sample belongs to the k-th component, while pg, models
the distribution of a sample given the fact that it belong to the k-th compo-
nent. Gathering all the parameters into 8 := (w, {6;}X_,), the mixture is
thus defined by Py := Y wipe, -

The most popular mixture model is, by far, the Gaussian mixture model
(GMM). Not very surprisingly given its name, in this model the compo-
nents pg, are Gaussian distributions N (s, Tx), i.e., 6y is given by a center
#, € RY and a (symmetric and positive semi-definite) covariance matrix
I, € R?¥? The mixture thus has a probability density function?’ is given
by
K
Po(x) = kZ wipa (% iy T),
=1
where p s (x; p, T') is the probability density function the multivariate Gaus-
sian distribution N (g, T).

Having defined our model 8, we turn to the loss. The most popular
criterion of "closeness" between the distribution to fit Pg and the dataset
X is the log-likelihood (LL) of the dataset X’ (this is known as maximum
likelihood estimation). In the language of SL, maximizing the likelihood of
a parameterized distribution with density function Pg(x) is achieved by
setting the loss to ¢(x,0) = —log(Pg(x)). Indeed, when plugged into the
ERM (2.4), this choice of loss is equivalent to

0 € argmaxgeo Yx,cx log(Pe(x;)) =: argmax LL(6; )
€0 (2.24)
= argmaxgee [ Iy,cx Po (i),

where in the second expression we see that we indeed maximize the likeli-

26The notion of "closeness" between probability distributions is formalized in Section 2.4.
¥ Abusing notations, we sometimes denote a probability distribution and its probability
density function (when it exists) by the same symbol, e.g., Pp.
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hood of observing the sample & assuming 6. For (Gaussian) mixture mod-
els in particular, the log-likelihood criterion reads

LL(6; X) = LL({wg, g, Tihis &) == Lf log (e wrp (x5 1y, Te)) -
(2.25)
The classical technique to solve mixture model problems is the Expectation-
Maximization (EM) technique [Mo096]. Without entering into the details, it
iterates by alternating between two steps: the "Expectation" step that com-
putes, for the current values of the parameters 6, the probability of each
sample x; belongs to any of the K components; and the "Maximization"
step that optimizes the parameters 8 given those probabilistic assignments.
To the attentive reader, EM should be reminiscent of the k-means algo-
rithm described above. In fact, k-means is a particular case of EM, where the
assignments of the samples to a component are "hard" (forced to be zero or
one) as opposed to the general case which allows "soft" assignments. Cru-
cially, the EM algorithm suffers from the same flaws that were discussed
above in the context of k-means: it is a local search algorithm which may
be very sensitive to the particular initialization choice, and requires many
passes (at each iteration) over the entire dataset X', which motivates a com-
pressive learning alternative.

Remark 2.8. More generally, the k-means problem can actually be interpreted
as particular density fitting task, where the components are Dirac deltas
pe, = Jc,- We will come back to this interpretation when we define com-
pressive k-means in Section 2.5.

Generative Networks Another density-fitting-type model that will be
studied in this thesis are generative networks (we’ll further develop this topic
in Chapter 6, but give a concise introduction here). Unlike mixture mod-
els, generative networks do not seek an explicit approximation to the true
data distribution Py, but approximate it implicitly by mimicking the action
of sampling from Py. More precisely, given a low-dimensional latent space
>, C R?, and a "simple" distribution P, to generate samples in this latent
space (e.g., a standard Gaussian distribution), data samples are generated
by Gg(z) where Gy : X, — X is a trainable neural network (with weights 6)
and z ~ P,. From a technical point of view, the modeled distribution Py is
thus the pushforward of P, through Gg.

In practice however, we don’t have access to Py, but can only gen-
erate an empirical distribution Po by sampling n’ examples Gy(z;) with

~

Z; ~jid. P: from it; we can write this empirical distribution as Py :=
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Go(Pz) = Y 0g,(z)- The goal of a generative network is then to find
the parameters 8 such that Py ~ Py, i.e., such that the set of generated sam-
ples "look like” the set of learning examples. The different divergences that can
be used to assess the "closeness" 733 ~ 73;\/ are explored in further detail
in Section 2.4; for now we simply mention that the best-known technique,
generative adversarial networks, learn this metric through a second "dis-
criminator” neural network [G114].

2.2 Signal processing

When talking about datasets in this thesis, we often refer to the learning
examples x; € ¥ C R? as "signals". While this term is maybe not com-
monly used in the machine learning literature, it is justified in the context
of this thesis, as it emphasizes the fact that we use many techniques from
the signal processing (SP) literature to manipulate those learning examples.
Indeed, the field of signal processing tackles the question of optimal ac-
quisition, encoding, transmission, and recovery of signals, such as audio,
images, video, multispectral volumes, etc.

A bird-eye view of signal representations While most of those signals
are associated with a continuous physical process, they have to be sampled,
or discretized, by some sensor (e.g., according to the Shannon-Nyquist rate)
in order to be handled by digital devices. Therefore, in SP (and in this the-
sis) the signals of interest are more often than not represented by a vector
x € R? living in a d-dimensional space®®.

However, this "canonical" representation of the signal x, in the so-called
ambient space R?, is quite impractical to work with directly. Typically, the
dimension d might be quite large, especially for "high-definition" signals
(consider for example a standard-sized image of 512-by-512 pixels; it lives
in the ridiculously large space of IR?92144). On top of this, the space of infor-
mative (or natural) signals is much smaller than the ambient space (to under-
stand this intuitively, consider again the example of a 512-by-512 image: if
we assign each pixel to an independent random value, which is equiva-
lent to performing some sight-seeing in the ambient space, the probability
to obtain a "natural image" that depicts something humanly intelligible is

28Here, the "dimension" d refers to the total amount of entries of the recorded signal. For
example, an image whose size is N-by-N pixels is of course a two-dimensional signal, but its
representation as a vector x € IR? lives in dimension d = N? (assuming the image vectorized,
e.g., by stacking the columns).
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negligibly small). Put differently, informative signals, when expressed in
the ambient space, are extremely redundant, which suggests that it might
be wasteful to meticulously store and process their d coefficients.

One of the most crucial endeavors of SP is thus dedicated to finding
more appropriate representations ®(x), called features”, of signals x € R?.
To achieve this, it is helpful to first identify, as precisely as possible, the
set ¥ C R? that contains (almost) all the natural signals of interest x. Be-
cause it is much smaller than the ambient space, the set X is often called a
low-complexity set, and the assumption x € X is a "low-complexity prior".
Equipped with this prior assumption, we can then construct a feature map
@ : X — £ that facilitates the processing of signals while accurately encod-
ing the geometry of the low-complexity set >—we say that ® "embeds" the
space .

What's next We present in this section a few selected topics (not meant
to be exhaustive) from the SP literature (and more specifically, from the
subfield of SP that studies embeddings, following the framework we just
described). In Subsection 2.2.1, we present the sparsity principle, one of
the most popular low-complexity models X. Next, we turn to compressive
sensing (CS) in Subsection 2.2.2, where the feature map @ : R? — R™ often
relies on randomness to simultaneously achieve signal acquisition and com-
pression provided the signals of interest follow a given low-complexity
prior. CS is the main inspiration for the compressive learning framework,
as we will see in Section 2.5. We complete this section with a few words on
quantized embeddings ® : R? — {0,1}™, which are of interest for Chapter 3.

2.2.1 Sparsity

Sparsity is a simple yet often quite accurate low-complexity prior [Mal99,
FR17]. Under the sparsity assumption, any signal x € X can be explained
as the linear combination of N > d elementary components ¢; € R (also
called basis elements or atoms), with the specificity that only a small number
(say, K) of components contribute to the decomposition. More specifically,
given 0 < K < d and a set of N elementary components ¥ = (¢, ..., ] €
RY*N  x is said to be K-sparse (in the basis, frame, or dictionary ¥), which

2Note that the role of "features" is here a bit different from, but related to, the role of
features in machine learning (Section 2.1), which aim at unwrapping nonlinear structures in
the data. This is connection is explicitly acknowledged in Chapter 3.
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we denote x € ¥ if it can be written as
x = Z]-Iil ajpp; suchthat |aljo:=|{j € [N],a; #0}| <K,

where the fp-"norm" ||a[|o counts the number of nonzero coefficients ;.
Sometimes, the signal of interest is not exactly sparse but compressible, mean-
ing that it can be closely approximated by a sparse vectors; e.g., if the ap-
proximation error decays "fast enough" with increasing K [SMF10].

Classical examples of bases ¥ (i.e., for which N = d) include the Fourier
basis, the Discrete Cosine Transform (on which the JPEG and MP3 com-
pression are based, for example), the (quite rich®’) family of wavelet bases [Dau88,
Mal99]. Examples of redundant dictionaries ¥ (i.e., for which N > d) in-
clude among many others, curvelets and shearlets. If a dataset of signals is
available, it is also possible to perform dictionary learning®' and to fit ¥ to
the dataset [MBP14].

Sparsity as regularizer for inverse problems An important application
of low-complexity models X appears in the context of (linear) inverse prob-
lems, where the goal is to recover an estimate ¥ for a signal xy € R from
measurements y € R of the type

y=Axy+e, (2.26)

where A € R"* is a known linear model for the measurement process
(the "forward model"), and e € R™ models a random additive corrup-
tion (e.g., Gaussian noise). Classical examples of inverse problems include
denoising, deconvolution (or deblurring), and inpainting. To solve the in-
verse problem, one might for example be tempted to try the following pro-
cedure®

% = argmin, g [y — Ax[3

However, without additional constraints, this problem is ill-posed, and
will yield a poor estimate for xg. Thus, the problem is regularized by means
of the low-complexity set X i.e.,

Onttp://tinyurl.com/wits-wavelets-starlet

31The dictionary problem can be formulated as an instance of our generic linear decompo-
sition task (2.22).

32Depencling on the noise distribution, other data fidelity penalties might be considered,
such as the /1 norm.
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x = argmin, s ||y — Ax|[3.

More generally, one considers a regularization term p(x) in the objective
function (possibly weighted by a regularization strength A), that encour-
ages solutions x € X. For example, for K-sparse vectors Xk := ZIIj , one
would ideally set p(x) = ||x||o. However, there is a catch.

Sparse recovery methods Optimizing over the {y-norm requires, intu-
itively speaking, to check out all the (I‘i) possible supports of x, which
grows combinatorially with the size of the problem; more rigorously, this
problem is known to be NP-hard [Nat95]. The sparse recovery problem is
thus usually not solved exactly; two broad approaches are used instead:
convex relaxations and greedy algorithms.

The idea of convex relaxations is to consider the /1-norm instead of the £y-
norm, which still tends to promote sparse solutions. Typically, one might
consider either the (constrained) Lasso>?

¥ =argmin, 1|y — Ax|3 st x| <7,
or the (Lagrangian) Basis Pursuit DeNoise (BPDN) program [CDS01]
% = argmin, }]ly — Ax[3+ A[x].

The advantage of this approach is that || - |1, although nondifferentiable, is
a convex function, which implies that there are efficient algorithms to find
the global minimizer, e.g., proximal methods [PB14].

On the other hand, greedy algorithms are local search methods (i.e., that
iteratively improve a candidate solution, but without concern for the global
optimization landscape), that heuristically try to solve (for example) the
following non-convex {y-optimization problem (where K is fixed a priori)

¥ =argmin, J|ly — Ax|3 st |x[o <K

For example, Iterative Hard Thresholding [BD09] alternates between a gra-

33When we defined the Lasso problem in machine learning (2.14), we actually wrote its
Lagrangian formulation, which is here called BPDN. In general, the term Lasso is used in the
literature to denote both the constrained form and the Lagrangian form. On the other hand,
the name BPDN is sometimes used to denote a constrained version BPDN, but where the
constraints are now imposed on ||y — Ax||» < C; this is all quite confusing, but in the end it
doesn’t matter, as all those approaches are roughly equivalent.
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dient descent step (which decreases the norm residual r := y — Ax) and a
hard thresholding step (which keeps the K largest magnitude coefficients
in x, de facto enforcing K-sparsity).

Another family of popular greedy algorithms for sparse recovery are
Matching Pursuit [MZ93] (MP) and its further improvements, such as Or-
thogonal Matching Pursuit [PRK93] (OMP), and Orthogonal Matching Pur-
sui with Replacement (OMPR) [JTD11]. The idea of MP-based approaches
is to initialize a solution with an empty support supp (x(?)) = @, which
is then iteratively refined. In particular, at each iteration f, we greedily
select the most promising index i; (i.e., the atom a;, that is the most cor-
related with the residual), and add it to the support of our solution, i.e.,
supp (x()) = {it,i;_1,...}; the best approximation within this given sup-
port can then be computed efficiently. As we will see in Section 2.5, the
main compressive learning algorithm, CL-0MP (R), is based on this strategy.

2.2.2 Compressive Sensing

We have established that natural signals belong to a low-complexity set &
(e.g., the set of K-sparse signals in some appropriate representation), i.e.,
have a small intrinsic dimension, which means that they can be represented
by a relatively small number of coefficient (e.g., « with [laljp < K < d).
The main motivation for Compressive Sensing (CS) [CRT06, Don06, FR17]
is the following observation: since such signals can be summarized as a
few coefficients, it is somehow wasteful to invest a lot of "resources” (see
Remark 2.9) in the high-definition acquisition of xy € R?, as most of those
coefficients are redundant and will be thrown away by a compression pro-
cedure.

CS thus aims at simultaneously compressing and sensing the signal of inter-
est. More precisely, instead of acquiring xy directly, we collect compressive
measurements y € R™, whose forward model reads as in (2.26), i.e.,

y=Axy+e,

where A € R"*? is a sensing operation that must be properly designed,
which should satisfy m < d. The philosophy is to thus sample only what
you need, i.e., sampling at m proportional to the intrinsic "information rate"
of xp, which might be much smaller than its Nyquist rate d.

Remark 2.9. The term "resources" is here a big vague, and can translate to
different physical quantities depending on the specific CS application (e.g.,
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the energy, time, hardware, etc. required for acquisition). Crucially, such
gains must be balanced with the drawback that the signal reconstruction
procedure (e.g., sparse recovery) from the compressed measurements is of-
ten quite demanding, which could in some cases nullify the gains of CS at
acquisition time. One typical example where CS has a clear advantage is
compressive sensing MRI [LDSP08, JEL15], where the saved "resource" of
interest is the MRI scan time, which is particularly costly, and justifies a
longer reconstruction time. We find it important to emphasize this tradeoff
underlying any CS application, because it similarly applies to compressive
learning as well.

The power of randomness The main question becomes: how should one
design the sensing operation A? One of the most striking messages of com-
pressive sensing is that this operation should be randomly generated (as a
typical example, the entries of the matrix are Gaussian A; ; ~;j ;4. N(0, % ))-
The obtained measurements, y; = (a;, xo) are also called random projections.
This fact can be quite intriguing; why would it not be possible to con-
struct A deterministically, where a randomized approach works? Referring
the reader to [FR17] for an in-depth explanation of this counter-intuitive
fact, we here provide an instructive illustration, coming from a classical
result closely related to CS: the Johnson—Lindenstrauss (JL) lemma [JL84].

Theorem 2.10 (JL lemma). Given a point cloud ¥. = {x1,x2,.., x5} C RY,
i.e., a finite set of N points in RY, and a multiplicative distortion € € (0,1), if the
log(N)

target embedding dimension m satisfies m > C=25=, there exists a linear map

f:R* — R™ that preserves the relative distances in . up to a distortion €, i.e.,
(I =e)llxi —xjlla < [If(x:) = f(xj)ll2 < (T +€)|lx; — xjll2,  Vxi,x € .

The detail that is of importance here is that the JL lemma only states
the existence of a map f, but not what this map actually is. More specifi-
cally, the existence of f is shown by the probabilistic method [ASO4]. Unlike
constructive methods that show the existence of f by providing a method
to construct it, the probabilistic method rather shows that, if f is randomly
generated from some well-crafted probability distribution (e.g., f(x) = Ax
with A; i ~ji4. N(0, %)), then there is a nonzero probability that f satisfies
the desired property (here, the embedding of a point cloud up to a dis-
tortion €), which implies that such an f must necessarily exist. Similarly,
Compressive Sensing results are "nonconstructive", in the sense that they
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do not provide an explicit construction for A, but a random generation
procedure.

A nice property of the JL lemma is that the embedding dimension m
does not depend on the ambient space d, but only the "complexity" of the
set 2, here measured by its cardinality (which related to its Kolmogorov
entropy, see Chapter 3). The idea of CS is to extend this fact to other low-
complexity sets X such as the set of K-sparse vectors; this is (often) formal-
ized as a Restricted Isometry Property, as explained below.

Recovery guarantees Let us summarize the main ingredients of CS: we
design a random sensing operator A (e.g., a Gaussian matrix), and obtain
Compressed measurements y = Axg + e. To obtain a reconstruction X ™~ X,
we find an appropriate low-complexity prior ¥, and obtain ¥ := A(y, A, X).
The "decoder" A is an algorithm that (approximately) solves the inverse
problem regularized by X (e.g., using one of the sparse recovery techniques
from Subsec. 2.2.1). The main objective of CS theory is then to find guaran-
tees that quantitatively explain how close the reconstruction ¥ is from xy (as
a function of the number of measurements ). In general, such guarantees
take the form of an Instance Optimality Property [BDP 14, KG18]:

Hi— XQH < ClD(xo,Z) +C2||E||, (2.27)

where c1,c; > 0 are constants, and || - || are (possibly two different) norms
(or pseudometrics). The reconstruction error is thus the sum of two con-
tributions:, a noise term proportional to |le| (robustness), and a modeling
error D(xp, L) (stability). The modeling error captures the "distance" be-
tween x( and the model set X, which satisfies in particular D(xp,X) = 0
if the modeling is exact, i.e.,, xo € X (e.g., for sparse signals ¥ = Xk,
D(xp,X) = ||xo — xk|| with xg is the best K-sparse approximation to xj).

Obtaining guarantees through the (L)RIP Such guarantees can usually
be established by proving that the random operator A satisfies—with high
probability—a specific property known as the Restricted Isometry Prop-
erty (RIP). In a nutshell, the RIP ensures that the distances between points
of ¥ (where traditionally > = Xg) are preserved under the map A (sim-
ilarly to the JL lemma, Thm. 2.10), i.e., A is an embedding of . In fact,
it was shown [BDP 14, KG18] that the instance optimality recovery prop-
erty is guaranteed® whenever A satisfies the Lower RIP (LRIP), defined as

34 Although the efficient implementation of the decoder A can still be an issue.
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follows®:

v > 0,if

we say that A has the Lower RIP over the set ¥, with constant

|lx — || < 9]|Ax — A¥'||, Vx,x €. (2.28)

This can be intuitively understood as the fact that two signals x, x” that
are distinguishable in the ambient space remains distinguishable after be-
ing embedded by A (a smaller constant 7y ensures a better control of the
distance distortion, which translates in lower constants ¢; and ¢; in (2.27)).

To guarantee successful CS recovery, it thus remains to prove that A has
the (L)RIP. One classical way to achieve this, as explained in [BDDWO08§], is
to first prove the RIP for a finite set of points (e.g., as in the JL lemma),
and to then extend this property by continuity; this strategy is further ex-
plained in Chapter 3. In the end, one obtains probabilistic guarantees, where
the RIP hold with probability 1 — § for some small probability of failure &,
provided that the number of measurements grows as m > m(J,y,dimX),
where dim X is a quantity that captures the intrinsic dimension of the low-
complexity set £ (e.g., Kolmogorov entropy [Pis99], upper box-counting
dimension [PDG17], Gaussian mean width [CRPW12]).

Let us finally mention that many sensing operations A exist beyond
the dense Gaussian case, which can be quite cumbersome in practice: e.g.,
generic i.i.d. sub-Gaussian entries [MPTJ08], sub-sampled Fourier [Rau10]
or Hadamard [MBDJ20], etc. Of particular interest sensing operations that
can be (at least conceptually) be implemented in hardware, such as the one-
pixel camera [DDT " 08], random convolutions CMOS imagers [JVB*09], as
well as the very promising Optical Processing Unit that performs random
projections optically in a scattering medium [SCC'16].

2.2.3  Quantized embeddings

We opened this section by explaining that, to be processed on a digital
computer, signals had to be discretized (i.e., sampled at a finite number
of points), e.g., by an Analog-to-Digital Converter (ADC), possibly com-
bined with a compressive sensing mechanism, which yields measurements
y € R™. However, computers also have to work with a finite-precision rep-
resentation of numbers, which means that those measurements must fur-
ther be quantized to be stored and processed, which can be modeled as a
map q : R" — & where € is a finite set (in particular, to fit onto a b-bit

% Following [KG18], the expression provided here is not at all (but of course still related to)
the "classical" formulation of the RIP, which is usually defined on £k and not pairs in £ x %,
with squared distances, and involves a multiplicative distortion (1 + §).
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representation, the encoding must satisfy |£| = 27). Of course quantiza-
tion induces an approximation error, which can be mitigated at the price of
increasing the amount of bits b (according to the rate-distortion curve). In
order to get the most out of the b-bit representation, a careful design and
study of the quantization operation g is required, which is thus an impor-
tant research area [Sha48, GN98].

Quantized CS Reconciling this quantization with compressive sensing
theory, i.e., quantized compressive sensing (QCS), is a problem that has gen-
erated a lot of interest. In particular, one-bit CS, where Q : R" — {0,1}"
(e.g., up to a rescaling, q(-) = sign (-)), has been particularly intensively.
We refer the reader to [BJKS15, Dir19] for broad overviews of this field.

One important trick that we will borrow from this literature, is that
of dithering (see, e.g., [X]J20,DS20]). This idea states that, to mitigate the
discontinuous nature of the quantizer g, it might in some cases be useful
to add a controlled random vector ¢ € IR", called the dither, prior to the
quantizer. The main idea is that, if the distribution of { € R" is well-
chosen, then it allows to mitigate the effect of quantization on average.

Universal Quantized Embeddings Among QCS approaches, of particu-
lar interest for this thesis (i.e., for Part I) is the so-called (one-bit) universal
embedding36, studied by Boufounos et al. in [Boul2, BM15, BRM17]. This
approach considers a periodic quantizer g, corresponding to the least sig-
nificant bit of a standard uniform quantizer. Without loss of generality, we
can assume that this quantizer has a fixed step-size of 7 (i.e., it is periodic
with period 277) and is re-scaled in {£1}, and define it as

q(+) := sign(cos(-)).

Boufounos et al. showed that the resulting embedding, when combined
with Gaussian random projections and a uniform dithering, i.e.,

®(x) :=q(Ax+&) where A;j~iiq N(0,072), & ~iiq U([0,27)),

preserves the local distances in the ambient space, that is, the distances up
to a given threshold Dy o« ¢. To be more precise, this embedding satis-

36The name "universal" here refers to the fact that the quantization does not depend on the
given signal, as opposed to e.g., LA quantization [STN96]. As there are many other "universal"
quantized embeddings, in my humble opinion, that name could have been better, such as
maybe "local embedding'?
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fies [Boul2]
[®(x) — D(x)||2 ~ c|lx —«'||, provided ||x—x|» < Dy =cc,

where ¢, ¢’ > 0 are absolute constants, and we note that || ®(x) — ®(x)||» is
here equivalent to the Hamming distance in the embedded space. Note that
the scale ¢ generating the random projections directly controls the radius
up to which the distances are preserved. Assuming an application where
only the local distances are important, the intuitive advantage of this ap-
proach is that the bit budget is allocated to encoding only the distances that
matter.

In order to study the precise distance-preserving capabilities of this em-
bedding (e.g., for a finite value of m), the authors of [BRM17] actually study
a generalization of this scheme, where g is any periodic function f, i.e.,

Note that when f(-) = exp(i-), this approach recovers the random Fourier
features (see Subsection 2.1.4); in this work, we thus dub this approach
random periodic features (RPF). We study RPF extensively in Chapter 3, and
sketches obtained by averaging RPF in Chapter 4.

2.3 Massive data synopses

As explained in Chapter 1, massive data fuel an increasingly large fraction
of modern systems. These applications must thus be able to handle large-
scale datasets X = {x1,..,x, | x; € IR”I}, i.e., that present at least one, and
possibly both, of the following characteristics: (i) the samples are high-
dimensional, 4 > 1 (e.g., high-definition images count millions of pixels);
and (ii) the amount of learning samples is very large’’, n > 1 (e.g., an
image recognition software might have to handle millions of pictures). The
exact definition of how "large" d or n should be to qualify as a "large-scale
dataset” varies according to the relative amount of resources available to
process the data, but to give a rough idea, one would be justified to call
data large-scale as soon it cannot fit in memory, e.g., if d > 103 or n > 10°.

The challenges of massive data When presented with such massive data,
traditional methods (i.e., designed for data of small to moderate scale) of-

37 As we will see, Compressive Learning is especially promising for this case in particular.
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ten fail spectacularly. For example, the amount of memory required by
the data-processing routine might exceed by far the physically available
amount. Even if memory constraints can be met, the computing time re-
quired to process the data volume might be exceedingly large (say, months
or years). Algorithms for massive data are thus subject to strict limits on the
allowed computational (i.e., time- and space-) complexities. Focusing only on
the number of samples 7 for the moment, polynomial complexities such
as O(n”) with power p > 1 are often prohibited in this context, although
they are considered benign in other areas of computer science [AB09]. Lin-
ear complexity methods, i.e., O(n), might not even be feasible if they re-
quire multiple "passes” over the dataset; sublinear complexity being then a
sine qua non requirement to handle the data. Similar problems apply with
respect to the dimension d, when dealing with high-dimensional data®.

While the raw computational complexity is the quintessential challenge
of large-scale data, other difficulties can also typically arise in this context.
A first one is the case of distributed data [PKP06,ALNT14], where the dataset
X is not stored at one single location but shared across p > 1 distinct de-
vices, i.e., X = X1 U U...UX),, where & is the dataset owned by the i-th
data holder. For example, the whole dataset might simply be too big to fit
in the memory of the device that has to do the computations, or the sub-
datasets X} are too costly to be transmitted (e.g., through a communication
network) to that device, or maybe those sub-datasets cannot be shared di-
rectly due to privacy concerns (this scenario is discussed in Chapter 5). In
any case, the data analysis must deal with the distributed nature of data,
e.g., by several rounds of communication with the different data holders.

Another important massive data setting is that of data streams [GZKO5,
Agg07], where new data samples are perpetually collected; typical exam-
ples of this setting include network traffic analysis, sensor networks, web
queries, the entire collection of Youtube videos [CAS16], and in general any
application that requires monitoring some form of perpetual data flow. The
dataset X is thus not fixed but always growing, which can be thought of
as n — oo (an algorithm that scales with O(n) is therefore not an option).
Of course, in practice X’ cannot ever be stored at all, and the new exam-
ples must be handled "on the fly" as soon as they become available, before
being discarded (note that this constitutes a single pass over the dataset).

3Note that this computational problem is distinct from the curse of dimensionality, discussed
in Section 2.1, although they of course often appear together.
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Data synopses Since traditional approaches fail on large-scale data, nu-
merous and diverse research efforts are dedicated to design alternative
methods, specialized to handle the large-scale setting. Their common®
basic idea is the following: since the dataset X’ is too large to solve the tar-
get task directly, break the problem down into two easier steps. First, we
summarize (or compress) X to a much smaller data structure S(X'), called
the data synopsis*”. Then, the desired problem is solved using only the synopsis,
which is significantly cheaper if S(X') is much "smaller" than X'.

For this generic approach to be useful, two conditions have to be met:
(i) the synopsis S(X') must be very efficient to compute and store (e.g., it
should not require more than a single pass on X); and (ii) the synopsis
must accurately encode the information that we seek to recover. To trade-
off between both of these conflicting objectives, a recurring theme in data
synopses is to introduce randomness in S: by sacrificing a bit of accuracy,
in the form of a probabilistic error, the compression procedure can be made
more efficient.

As illustrated Fig. 2.3, the synopsis operation S usually applies one
(or a combination) of three basic techniques: dimensionality reduction, sub-
sampling, and sketching. We briefly describe those techniques in Subsec-
tions 2.3.1, 2.3.2, and 2.3.3, respectively. More information on those subject
can be found, among others, in [CDK17, BHK20, Phil6].

2.3.1 Dimensionality reduction

The idea of dimensionality reduction is to compress each sample in the dataset
individually, which provides a new dataset of size n x d’ for some embed-
ding dimension d’ < d. Given a dimensionality reduction map ® : R? —
R, the synopsis is thus given by

S(X)=Y:=(yy,...y,) where y,=d(x;) € RY .

Dimensionality reduction techniques are often further classified into
data-independent and data-dependent approaches, depending on whether or

%Some techniques, such as MapReduce [DG10], do not follow the "synopsis" idea pre-
sented here. Instead, they seek efficient data communication protocols to still handle the
full-scale dataset, by relying on the "brute force" of cluster computing. Those approaches are
however out of the scope of this work.

4“OWe borrow the term "synopsis" from [CGHJ12], which reviews the field of Approximate
Query Processing (AQP). AQP mainly tackles SQL-like queries (e.g., counting the data sam-
ples that share some specific attributes) on large-scale data; here the context is slightly more
general, and "data synopses" also includes other tools for massive data, such as coresets.
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Massive Dataset X’
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Fig. 2.3 Three basic techniques to construct synopses of massive data
(n samples in dimension d): dimensionality reduction which reduces the di-
mension to d’ < d for each data sample individually, subsampling which
represents the entire dataset by only n’ < n a few representative samples,
and sketching which constructs an easy-to-update data summary of size m.
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not the dataset X’ is used in the design the map ®.

Data-independent approaches We already encountered the most promi-
nent data-independent dimensionality reduction technique, the Johnson-
Lindenstrauss lemma (Theorem 2.10), and its implementation by random
projections [XLX17] in particular: ie., ®(x) = Ax for A € R? > a random
matrix, possibly structured to ensure fast transforms [CRW17]. To further
compress the representation, this is sometimes combined with quantiza-
tion (in the spirit of QCS), possibly involving Locally Sensitive Hashing
techniques [IM98].

Many signal processing tasks (e.g., detection, filtering) can be performed
directly in the compressed domain (i.e., on the random projections y; in-
stead of the high-dimensional signals x;) [DBWB10]. This idea was also
applied in the context of machine learning, e.g., for SVM*! [C]S09] or re-
gression [MMO9]. Solving k-means clustering from compressed signals
also received a lot of attention, see e.g., [BZD10,NSW17,Dup18].

Data-dependent approaches Fitting ® to the specific dataset at hand is
done by solving an unsupervised learning problem, such as those discussed
in Subsection 2.1.5. Typically, PCA is used to project the data to a lower
dimension while preserving most of its variance. More sophisticated, non-
linear dimensionality reduction approaches can also be considered, such as
t-SNE [VAMHO8], manifold unfolding techniques [LV07], or autoencoder
networks [BGC17]. Although data-dependent approaches tend to better
capture the relevant data geometry (given a fixed target dimension d’), they
can be infeasible, e.., if the dataset is not available in advance or cannot be
processed efficiently—which is here the point of computing a synopsis in
the first place.

Obviously, dimensionality reduction techniques are especially useful
when the large-scale component of the dataset is primarily the dimension
d. Conversely, since the synopsis is still constituted of n distinct data vec-
tors, this approach is ill-suited to problems where the number of samples n
is particularly large—which is remedied by the two other basic techniques.

“1The idea of learning from compressed signals is sometimes (among others, in [CJS09,
TYD20]) called "compressive learning". That line of work should not be confused with "our"
notion of compressive (statistical) learning, where (as explained in Sec. 2.5) the linear com-
pression operation acts not on individual signals but on entire probability distributions (e.g.,
the empirical distribution associated with the dataset).
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2.3.2  Subsampling

Generally speaking, subsampling is the converse idea of dimensionality
reduction: to summarize the dataset, represent it by a smaller subset of
n' < n examples:

S(X)=X":=(x,...x),) where xj€ R,

To enrich this type of representation, weights « = (a1, ..., &,7) € A,y are also
often assigned to the samples, depending on their relative importance.

Random sampling The most direct method to produce such a synopsis
is to sample at random from the original dataset X, ie., x; = xj, where j;
denotes the index that was chosen for the ith subsample, here randomly
generated (e.g., uniformly, j; ~;;q. U([n])). While this idea sounds sim-
ple, it can already lead to nontrivial tradeoffs (e.g., should one sample with
or without replacement?), and can be refined by more sophisticated tech-
niques such as stratified sampling; see [CGHJ12, Chapter 2] for a review
of "direct" subsampling in AQP.

Coresets Another important type of "subsampling-based" synopses are
coresets; we present the idea only briefly here, referring the interested reader
to detailed introductions to the subject in e.g., [Phil6, BLK17,]JMF19]. In
contrast with the generic random subsampling approach, the philosophy
of coresets is to somehow tailor the subset X’ towards a specific application
(typically one machine learning task in particular). In other words, from the
point of view of the machine learning task, the datasets X’ and X should be al-
most identical. Given a task defined by a loss ¢(6, x), a good coreset should
for example aim at approximating the empirical risk objective
Pal(6,x)) =Y (e, xy).

The subsamples are either elements from the original dataset x; € X (e.g.,
by a random sampling biased towards samples that contribute significantly
to the risk objective), or are "free parameters” xg € RY that can be tuned
during the coreset construction (i.e., generalized coresets).

Because they are specialized to the task at hand, coresets can often lead
to much smaller subsamples while incurring only a small loss of learning
performance—although this must be carefully balanced with the complex-
ity of building the coreset in the first place. Another family of synopsis
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constructions which tends to be more efficient with respect to this aspect is
the one of sketching methods.

2.3.3 Sketching

Both dimensionality reduction and subsampling synopses approximate X’
by a "smaller dataset” (by acting on the dimension d or number of samples
n, respectively), that can then (almost) directly be fed to a classical learning
algorithm. In contrast, the sketching approach compresses the dataset as a
more generic structure*?, here w.L.o.g. presented as a vector z, from which
the desired parameters 0 must be extracted by a different algorithm A:

S(X)=z:=2z(X) € R" where 6=A(z).

Many different definitions of "sketches" exist in the literature, as illustrated
by several reviews [CGHJ12, ACHT™13, Phil6, BHK?20], but it is commonly
agreed upon that they should satisfy (some of) the following properties:

* easy to store and process: the sketch should have a small size with re-
spect to the dataset size m < nd, such that z takes little space in
memory, and queries for A(z) are fast;

e easy to update: when presented with a new learning example x/, the
updated sketch z(X U {x"}) can be cheaply computed from z(X') and
x/, which allows to handle data streams efficiently;

* easy to merge: when two datasets &} and A, must be combined, the
merged sketch z(X; U X,) can be cheaply computed from their respec-
tive sketches z(X7) and z(X,), which allows to handle distributed data
efficiently.

Historically, sketching methods focused on simple queries, as illustrated
by their classic examples: the Morris sketch for counting the size of the
dataset n with space complexity O(log(log(n))) [Mor78], the Bloom filter
for testing whether or not one specific example is in the database [Blo70],
the Flajolet-Martin sketch and its HyperLogLog improvement for counting
the number of distinct elements in the dataset [FM85, FFGMO07], the Count-
Min sketch for detecting "heavy hitters" (elements in the database that are
the most frequent) [CMO05], etc.

“ Although we here give a specific meaning to it, "sketching" is a vague term used quite
inconsistently in the literature to denote many different techniques, and should thus be inter-
preted carefully (e.g., it sometimes denotes what we here called dimensionality reduction, but
is also sometimes a synonym for "streaming algorithms", two fairly different concepts).
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Linear sketches A generic class of sketches that are both easy to update
and easy to merge are linear sketches, defined by*® the property that the
merged sketch is the sum of its sub-sketches, i.e., z(X; U Xp) = z(&)) +
z(A3). This sketch is necessarily a "sum-of-features" operation: for some
feature map @ : R? — IR”, the associated linear sketch is

z(X) =1L, (x)). (2.29)

A well-known example of linear sketch is the histogram of the dataset,
which is obtained by setting (assuming d = 1 for simplicity) ®;(x) = ¢(b; <
x < bj;1) € {0,1} for b; the edges of the histogram bins (assumed fixed in
advance); see [CGHJ12, Chapter 3]. Another popular example are wavelet
synopses of the dataset, where ®;(x) are wavelet basis elements** over RY;
see [CGHJ12, Chapter 4].

However, such sketches scale exponentially with the dimensionality
d. One way to circumvent such scalability issues is to consider a random-
ized map ®. For example, the recently proposed RACE sketch considers
locality-sensitive hashing features [CS20b]. This type of sketch construc-
tion is in fact exactly the paradigm followed by compressive learning—but
before delving into the details of CL, remark how the linear sketch con-
structions discussed here all aim at somehow representing the data distri-
bution Py instead of the dataset X. In the next section, we thus first detail
the meaning of "approximating a probability distribution".

2.4 Probability measures geometry

The philosophy of compressive learning is to focus on accurately "repre-
senting" the probability distribution of the data instead of the individual
signals in the dataset. A last broad topic of interest to understand CL is
thus what we will call*® the geometry of probability measures, which seeks to
answer the following questions: given two probability distributions, how
"similar" are they to one another? Pragmatically, how can we encode (or
embed) those distributions such that this similarity, or "geometry", is pre-

“3We give here again one specific meaning to "linear sketch", but this term can have different
meanings in the literature.

44Anticipating connections from Section 2.5, wavelet sketches are nothing but the wavelet
representation of a signal, where the signal in question is the (empirical) probability distribu-
tion of the data, considered up to some finite resolution.

“5There isn't really a cohesive "geometry of probability measures" research field; what we
present here are broad questions studied in statistics, applied mathematics, and data science.
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served?

In Subsection 2.4.1, after formalizing this question, we present two broad
families of divergences and metrics on probability measures (i.e., ways to en-
code a "dissimilarity"), illustrated by a few classic examples. In Subsec-
tion 2.4.2 we take a closer look at one specific metric of interest for CL,
namely the Maximum Mean Discrepancy. To complete our tour of prob-
ability measures geometry, we discuss a few related approaches in Sub-
section 2.4.3, i.e., information geometry, optimal transport, and the generalized
method of moments.

2.4.1 Problem statement and overview

Probability measures Most probability courses start in the discrete world,
inhabited by coins, dices and cards: random variables X that can take val-
ues only from a finite* set, {sy,...,sy}. Such random variables are fully
characterized by their probability mass function, or simply probability distri-
bution, a vector p whose entries correspond to the probability that each
possible outcome happens, i.e., p; = P[X = s;]. Owing to the probability
axioms, the entries of p are nonnegative and must sum to one; the space of
all possible probability distribution is called the probability simplex Ay,
peAy:={acRV,a;>0YN o =1}

When the random variable X is continuous, which can take values in
some infinite set ¥, it can sometimes still be represented by a probability
density function (PDF) px(x), which can then be integrated (with respect
to the Lebesgue measure) to give the probability that X belongs to a specific
set S C %, ie, [¢px(x)dx =P[X €S].

In general, not all distributions have a PDEF, but are instead character-
ized by the more general notion of probability measure. Roughly speaking, a
measure P € M(X) defined on the set ¥ is a mathematical object such that
one can integate (in the Lebesgue sense) any (well-behaved) continuous
function f : ¥ — R with respect to it [PCT19], i.e.,

Js f(x)dP(x) € R (2.30)

Similarly to the definition of the probability simplex, a measure is a prob-
ability measure if it is moreover (i) positive, i.e., for all S C %, P(S) =

46To be correct, discrete random variables can also be defined over infinite but countable
sets, but we focus on the finite case for now.
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Js dP(x) = P[X € S| > 0 (the probability of any event S is non-negative),
and (ii) normalized such that [; dP(x) = P[X € X] = 1 (the total "prob-
ability mass" is one). The set of all probability measures on X is then
noted MY (£). Note that if the distribution has a PDF px(x), we can write
dP(x) = px(x)dx.

One elementary probability measure of great interest is the Dirac mea-
sure, an infinitely concentrated probability mass. The Dirac measure lo-
cated at ¢ € X, noted §, € M#(Z), is such that for all continuous f, we
have [ f(x)ddc(x) = f(c). We already encountered it in the context of the
empirical distribution of a dataset X = {x;}""_;, namely Py = % Y Ox;

Divergences and metrics on probability measures Given two probabil-
ity measures, say, P and Q, the broad question of "probability measures ge-
ometry" is to quantify how different P and Q are: we are interested in a no-
tion of "dissimilarity” D : M! (£) x ML (£) = Ry : (P, Q) — D(P, Q).
To be more precise, the function D is usually either a (statistical) diver-
gence [PCT19], for which D(P,Q) = 0 & P = Q but that do not neces-
sarily satisfy symmetry (in general, D(P, Q) # D(Q,P)) nor the triangle
inequality; or a (pseudo)metric [ST10], which is symmetric, satisfies the tri-
angle inequality, and for which P = Q@ = D(P, Q) = 0, but which does
not necessarily satisfy D(P, Q) = 0 = P = Q (only if D is a "true" metric).

Two important families Many popular statistical divergences belong to
the family of ¢-divergences, also known as Csiszar divergences [Csi67] or
Ali-Silvey distances [AS66]. Intuitively speaking, such divergences com-
pare the probability measures "point-wise" by averaging their "odds ra-
tio"” g—g. If the measures P, Q have PDFs px and py, this amounts to
compare px(x) and py(x) at every x, by averaging the ratio of the densi-

px(x)
py(x)’
is required to be convex and such that ¢(1) = 0 (when the odds ratio is one,

there is no contribution to the divergence). The ¢-divergence thus reads

ties

Moreover, this ratio is weighted by an entropy function ¢, which

Dy(P, Q) =[x #(§5)dQ, (2.31)

where, to ensure % is well-defined, one usually sets D¢(P, Q) = +o0

whenever P is not absolutely continuous with respect to 9%. If the mea-

47This quantity is known as the Radon-Nikodym derivative.
48Gee [PCT19, Chapter 8] for a more formal discussion.
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sures P, Q have PDFs px and py, this happens if the support of px is not
a subset of that of py, i.e., 3x such that px(x) > py(x) = 0.

Remark 2.11. In the better-known discrete setting, if we have two probabil-
ity distributions p, g € Ay, the ¢-divergence is given by

Dy(p,q) = TN (g,

with Dy (p, q) = +oo if for some i, p; > g; = 0.

Another important family of dissimilarities on probability measures
ML (2) is the one of Integral Probability Metrics (IPM) [Miil97]. Intuitively,
the underlying idea is to use (2.30), the fact that measures can be integrated
against any continuous functions f, and to compare the integrals obtained
with both P and Q, for all "test" functions f in a well-chosen family. More
precisely, given a class F of bounded and measurable functions f : £ — R,
the related integral probability metric 7y r is

vF7(P, Q) :=supser| [y fAP — [5 fdQ]. (2.32)

As explained in [ST10], integral probability metrics are in general pseudo-
metrics, but there are many choices of the family of functions F that ensure
v F is a proper metric (such that yz(P,Q) = 0 = P = Q). The relation-
ship between ¢-divergences and integral probability metrics is explored
in [SFGT09].

Classic examples One of the most famous divergences is the Kullback-
Leibler (KL) divergence Dg (P, Q), also known as relative entropy*’, ob-
tained by picking the usual Shannon entropy function [Sha48], i.e., ¢(t) =
tlog(t). A "symmetrized" version of the KL divergence (which is itself a ¢-
divergence for an appropriate ¢) that is often used is the Jensen-Shannon
divergence Djs(P, Q) = % (Dkr(P,R) + Dgr(Q,R)), where R = P%Q

An often encountered distance (true metric) between probability mea-
sures is the fotal variation, which is intuitively the largest difference be-
tween probabilities that any event S occurs under both probability distri-
butions, i.e., Dty (P, Q) = supg. 5 |P(S) — Q(S)|. It belongs both to the
family of ¢-divergences (with ¢(t) = |t — 1|) and integral probability met-
rics (with F = {f, |[fl < 1}).

“In information theoretic terms, this is the difference between the cross-entropy of P, Q
and the entropy of P, i.e., H(P, Q) — H(P).
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2.4.2  Maximum Mean Discrepancy

One metric of specific interest to compressive learning is the Maximum
Mean Discrepancy (MMD) metric, introduced in [GBR"12]. The high-level
idea of the MMD is to specify a kernel x to compare points in the signal
space L (see Subsection 2.1.3), and to assign a distance D (P, Q) measur-
ing how much pairs of signals differ (as captured by x) on average (defined
by P, Q). Mathematically, the MMD D, (P, Q) is obtained as an instance
of the IPM family (2.32), where the family F = {f € H, | f|ln, < 1} are
bounded functions in the RKHS H, associated with x [GBR*12].

Kernel Mean Embeddings The MMD is actually best understood when
expressed differently: intuitively, it maps the probability distributions to a
nicer space, the reproducible kernel Hilbert space H,, and to compares them
in this embedded space. More formally, given a kernel «, the associated
kernel mean embedding is the map p : MY (X) — H, defined by [SGSS07]

1 (P) = /}2 x(x,-) dP(x). (2.33)

The associated maximum mean discrepancy can then be written as the dis-
tance in the embedded space [GBR" 12, Lemma 4], which is easier to in-
terpret as averages of pointwise kernel evaluations [GBR" 12, Lemma 6]:

D{(P, Q) = llux(P) — ux( Q)13

=Ewp k(x,%") —2Ex px(x,y) + Ey g x(y,y').
x'~P y~Q y~Q

(2.34)

Remark 2.12. When ¥ = R? and the kernel is shift-invariant x(x,x’) =
k*(x — x’), there is a particularly intuitive interpretation of the MMD: it
corresponds to the plain L, distance of the convolutions of the two proba-
bility measures by x*(u), i.e.,

D2(P,Q) = |x£IjZPKA(x7u) ny)KA(yfuﬂ2 du = ||x** P — "« Q|2,.

Also, due to Bochner’s theorem x* = F~1A, the MMD can be expressed
in the Fourier domain: writing ¢p(w) = E,.p ¢l“'* the characteristic

| 59



2 | Preliminaries: Flavors of Compressive Learning

function (inverse Fourier transform) of the distribution P,

DX(P, Q) = [ lop(w) — po(@)PdA(w). 2.35)

The MMD thus captures the (pointwise) difference between the character-
istic functions ¢p(w) and ¢o(w), weighted by the distribution A(w). In
short, from a signal processing point of view, the MMD compares low-pass
filtered versions of the probability distributions P and Q.

Characteristic kernels Note that in general, the MMD is a pseudometric.
Kernels k¥ which ensure the Dy is a proper metric (i.e., Dx(P,Q) = 0 =
P = Q) are called characteristic kernels [FSGS08]. For example, in ¥ = R4,
if the kernel is shift-invariant x(x,x’) = x*(x — x’), it is characteristic if
and only if its Fourier transform A = F«* is supported on the whole space
R4 [ST10].

We refer the interested reader to [MFSS17] for an complete introduction
and review on the subject of kernel mean embeddings and the MMD.

2.4.3  Other topics

For completeness, we briefly mention a few other techniques to deal with
the generic problem of "probability measure geometry".

Information Geometry The field of Information Geometry [Nie20] formally
studies the geometry of probability measures using tools from differen-
tial geometry, i.e., it explicitly acknowledges, and deals with, the man-
ifold structure of M () (possibly with some additional parameteriza-
tion). This approach leads to a natural notion distance, the Fisher informa-
tion metric [Rao45], and other useful notions such as gradients on M1 ().

Optimal Transport In a nutshell, the goal of Optimal Transport [Vil08,
PC*19] is to solve mass transportation problems, specified by a notion of
"cost" ¢(x,x") which represents the price to move one unit of mass from
x to x’. This approach leads to several important and elegant definitions
of distances on (probability) measures; the most popular is undoubtedly
the Wasserstein distance, also known as earth mover’s distance. They are an
instance of IPM, where F is the set of 1—Lipschitz functions.
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Generalized Method of Moments We are given a parametric distribu-
tion Py € M (T) that must be fitted to a dataset X = {x1,..,x,} C R%.
To estimate the parameter 6, a well-known alternative to Maximum Like-
lihood (e.g., when the likelihood is not available) is the Generalized Method
of Moments (GeMM) [Hal05]. The main idea of this technique is to craft a
vector-valued function ® : R? — R and to select the parameters that best
match the empirical generalized moments’ defined by @, i.e.,

0 carg ming g || Exwp, ®(x) — 1 Y0, &(x;) I3 (2.36)

This amounts to pick the distribution Py that is the closest to the empir-
ical distribution Py in the sense defined by the "distance" || Py — Py |lo :=
| As(Pg) — Ao (Px)||2, where Ag(P) := Eyp ®(x) is the operation that
computes the generalized moments of P. This will become clearer in the
next subsection, where we will see that compressive learning follows al-
most exactly the same prinicple, with the twist that ® is randomly gener-
ated—in contrast with GeMM that considers a carefully crafted ®.

2.5 Compressive Learning

Having discussed the various disciplines that inspired compressive learn-
ing, we can now fulfill the promise from Fig. 2.1 and present CL while
drawing insights from those disciplines. We describe the general frame-
work in Subsection 2.5.1, give practical instances of it in Subsection 2.5.2,
and discuss theoretical learning guarantees in Subsection 2.5.3

2.5.1 The general compressive statistical learning framework

Sketching phase The general compressive learning framework was in-
troduced in [KBGP18] and further developed in [GBKT17] by Keriven, Gri-
bonval, and coauthors. Their main inspiration is to generalize the frame-
work of compressive sensing (see Subsec. 2.2.2), which compressively senses
a vector signal x9 € R by a random linear operation A : R — R", to
the case where the sensed signal of interest is a probability measure Py €
ML (Z) (see Subsec. 2.4.1). The random linear "sensing operator” is thus
amap A : MY (Z) — C™" that "compresses’ any probability distribu-

50The "usual" moments of a (one-dimensional) distribution are E xp XF forp = 1,2,..,,
which are a particular case of the generalized moments, with ®(-) = (-)”.
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tion’! P € MY () as A(P) € C™, a finite-dimensional vector of measure-
ments°?. By analogy with the literature on sketching methods in data syn-
opses (see Subsec. 2.3.3), the vector of compressive measurements A(P) is
called the sketch of P, and A is coined the sketching operator. More pre-
cisely, this operator is defined as the average of some feature map ® : & — C™.

Definition 2.13 (Sketching operator). Given a feature map ® : ¥. — C™, the
related sketching operator Ag : M1 (L) — C™ is defined as

Ap(P) :=Eyup @(x) = [ P(x)dP(x). (2.37)

We mentioned above that, by analogy with CS, the sketching operator
Ag is linear and random. Here, linearity refers to the fact that, by linear-
ity of the expectation, A is linear in the probability distributions®, i.e.,
Ao(aP1 + (1 —a)P2) = aAe(P1) + (1 — a)Ap(P2) for any two distri-
butions P71, P, and mixture coefficient &« € [0,1]. Moreover, randomness
refers to the fact that in CL the map & is randomly generated (unlike in
GeMM [Hal05] for example), as will be clarified in the next section. We say
that the sketch computes random feature moments of the distribution.

The goal of compressive learning is to solve machine learning tasks
(Section 2.1), i.e., to infer parameters 6 from a (compressed version of)
datasets X. The sketch of the dataset is defined as the sketch operator act-
ing on the empirical distribution P v associated with this dataset.

Definition 2.14 (Sketch of a dataset). Given a feature map ¢ : & — C”"
and a dataset X' = {x; € £} ,, the sketch of this dataset, noted®* Zp,x, is

20,1 1= Ao (Py) = 3 LiLy (i) € C", (2.38)
i.e., the empirical average of the features ®(x;) of the dataset.

The computation of zg y can be performed very efficiently on large-
scale datasets, thanks to the independence of the contribution by each
data sample. Indeed, this computation requires only a single pass over the
dataset (after which X can be discarded), and is highly ("embarassingly")

510mitted here is the fact that more generally, the sketch operator can be defined on arbi-
trary signed measures, see [KBGP18].

52While here for convenience the resulting sketch is a complex vector z € C", this is not
necessarily always the case, as real-valued sketches z € IR™ can be considered as well.

53In particular, the feature map @ is allowed to (and will indeed) be nonlinear.

5*When there is no ambiguity, we drop the subscripts ® or X' from Ag and zg, x-
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parallelizable. Moreover, it is especially well-suited to deal with streaming
and distributed datasets, as explained in Subsection 2.3.3.

Remark 2.15 (zg x as a "linear sketch"). The sketch defined by (2.38) is not,
strictly speaking, a linear sketch in the sense defined in Subsection 2.3.3,
since it is the average of features instead of the sum as required by (2.29).
It can however still be assimilated to a linear sketch—and its advantages,
such as easy update and merging operations—if we consider the map ®(x) :=
(P(x),1). This gives after summation (2.29), a tuple (}_; ®(x;), n), which is
indeed a linear sketch, from which the "average" sketch (2.38) can later be
computed™.

Learning phase The ultimate objective in compressive learning is to solve
a given machine learning task using only the sketch z. As explained by (2.3)
in Section 2.1, ML tasks are often formulated as the fitting of some param-
eter vector 8 € @ to the true data-generating distribution Py, following the
risk minimization principle. Given a loss £(0, x), we seek the parameters 6*
which minimize the average loss, or risk, according to Py, i.e.,

0" € argming g R(6;Py), where R(6;Pg) := E.p, £(6,x).

Following through with the compressive sensing analogy, CL formu-
lates this learning phase as an inverse problem (see Subsec. 2.2.1). Roughly
speaking, the idea is to assimilate®® a distribution Pp € M1 (L) to any pa-
rameter vector 8 € ©. Intuitively, Py describes what the data distribution
should look like under the assumption that # models the data perfectly.

As in a usual inverse problem, compressive learning then selects the
parameters 8 that best fits the "measurements” z, as captured by "sketch
matching" cost function C(6; z):

0 € argming_g C(0;z), where C(6;z):= ||z—A(Pp)l2  (2.39)

Why should this principle work? As will be further developed in Sub-
sec. 2.5.3, the main explanation is that the sketch matching cost C(6; z) can
be seen as a surrogate to the risk objective R(0; Py). If the sketch is well-
designed and is sufficiently large, we can expect that (roughly speaking)
C(6;z) ~ R(6;Py), which ensures that the compressive learning solution

55 A similar trick will be employed in Chapter 5 to decouple the impact of a new sample as
one contribution to the sum-of-features and one to the dataset size.
%0In general the idea is in fact a bit subtler than that, as explained in Remark 2.16.
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Fig. 2.4 The sketch matching cost C(6;z) as surrogate for the true risk
R(6; Py). Here, the k-means problem with k = 2 centroids {6y, 6,} is con-
sidered on a 1-d dataset X (left). The risk R(6; Py) (which defines the true
optimal centroids 6*) is shown in blue. The sketch matching cost C(6; z) is
shown in green, for a small (top row) and moderate (bottom row) sketch
size m. As can be seen on the slice of the objective functions on the right,
when the sketch size increases, the approximation C(6;z) ~ R(6; Py) im-
proves, and the compressive learning solution 8 approaches 6*.
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0 is a good estimate of the desired true risk minimizer 6*. This idea is
illustrated by Fig. 2.4.

Remark 2.16 (Semi-parametric compressive learning). Asexplained by Shee-
han et al. in [SGD19], for semi-parametric modeling tasks (such as PCA), the
map 0 — Py is not necessarily well-defined (e.g., many densities Py may
equivalently be considered for a given model 8). This is not per se an issue,
as in practice we do not actually need 6 — Py, but rather 6 — A(Py),
which is indeed (e.g., for PCA) a proper function [GBKT17, Remark 2.1].
The reformulation proposed in [SGD19] clarifies this issue by mapping 0
to a unique statistic 0 — Xy instead of Py.

2.5.2  Practical applications: sketch constructions and learning algorithms

We now instantiate the generic framework described above to the two most
important tasks considered in this thesis: compressive k-means [KTTG17]
and compressive Gaussian mixture modeling [KBGP18], which both rely
on random Fourier features to build the sketch. Other tasks and sketch
constructions are discussed at the end of this subsection.

Sketching with random Fourier features Recall that random Fourier fea-
tures (see Subsec. 2.1.4) are constructed by the projection on a matrix Q) =
(wy, ..., wn) of random vectors wj ~jiid. A, followed by complex expo-
nentiation, i.e.,

Drpr(x) = ﬁexp(iQTx).

In [KBGP18], the authors propose to use ® = P to construct the
sketch operator, which gives

T
A(P) = ﬁ Ey.pe® ¥ = ﬁ[(PP(wj)]}”:y
where ¢p(w) := Eype@ ¥ is the characteristic function of P. We ob-
serve that the RFF sketch thus corresponds to random sampling of P in
the Fourier domain, which is sampled at the m frequencies w; ~j;q. A.

Remark 2.17 (RFF sketch as an embedding that preserves the MMD dis-
tance). The random Fourier features sketch operator .4 can be seen as a
finite-dimensional approximation to the kernel mean embedding (2.33) that is
defined by the shift-invariant kernel x(x,x') = x*(x — x') = (F1A)(x —

57\Where we recall that the distribution A can be related to a shift-invariant kernel through
Bochner’s theorem.
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x") [KBGP18, Section 4]. In particular, by virtue of (2.35), the Euclidean dis-
tance between RFF sketches || A(P) — A(Q)||2 approximates ("embeds")
the MMD metric D, (P, Q), as

IAP) ~ AQ)IE = 1, lon(e;) — g0l
£
~ E |pp(w) ~ polw)? = DA(P, Q).

Compressive learning of mixture models Consider a generic mixture
model fitting problem (see Subsec. 2.1.5), where the density to fit is a mix-
ture of K simple components pg, weighted by a; > 0; the parameter vector
is thus 0 := (a, {6;}K ). In this case, the map 6 — Py (which should
assign a distribution to the model ) is simply the mixture itself, i.e.,

Po = Y1 %P, (2.40)

This setting covers both compressive Gaussian mixture modeling [KBGP18],
where pg, = N (py, '), and compressive k-means [KTTG17], where pg, = &,
(i.e., a weighted mixture of Dirac deltas located at the centroid positions).
Note that for compressive k-means, the sketch of each component is given
directly by A(pg,) = ®(cx). Another instance of this setting are mixtures
of alpha-stable distributions [KDL18].

Note that (2.40) is a sparsity assumption (see Subsec. 2.2.1), as it assumes
that the signal of interest (the probability distribution) is a linear combina-
tion of a small number K of elementary contributions p, .

In this case, using the linearity of the sketching operator, the compres-
sive learning problem (2.39) becomes

0e argmin, ||z — Tk, apA(poy) ll2-

This non-convex problem is hard to solve exactly, but the CL-OMPR algo-
rithm (based on the Matching Pursuit methods discussed in Subsec. 2.2.1)
was proposed in [KBGP18] to solve it approximately. More precisely, this
method greedily selects new atoms 6’ (that are the most promising in re-
ducing a residual r, i.e., by approximately maximizing (e.g., using quasi-
Newton optimization schemes) the non-convex criterion <$§:;”, r). The
method then alternates between adding new atoms and further decreasing
the cost function by local minimization initialized at the current solution.
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Note that this heuristic algorithm ("decoder") is not guaranteed to find the
global minimizer 6, as further discussed in Chapter 6.

Designing the sketch operator To fully specify the CL scheme, it remains
to specify the parameters defining the sketch operator 4, i.e., in the RFF
case, the frequency sampling pattern A, and the sketch size m.

Several frequency sampling patterns A have been discussed in [KBGP18],
which we quickly recall here. A first straightforward choice is the Gaussian
sampling strategy A = N(0,0~21;), which means that the associated RFF
approximate a Gaussian kernel with scale o, i.e., (®(x), ®(x')) ~ x(x,x') =
exp(—%). As argued in [KBGP18], this pattern under-explores the
low frequencies (due to the curse of dimensionality), so another possibil-
ity is to decompose w = Rg, where ¢ ~ U(S%1) is a normed random
direction and R ~ pr(R;0) is the norm of w, which can thus be directly
controlled. Two choices for this latter distribution were proposed: either

(FG) a folded Gaussian pr o« e_(”R)z, or (AR) the adapted radius distribu-

1
tion defined as pr (((TR)Z + @) o (0R)? [KBGP18].

In any case, given a frequency sampling pattern, one still has to select
the scale parameter ¢ > 0, which should be adjusted to the current dataset ei-
ther by prior knowledge or from a some heuristic (e.g., [KBGP18,BCGS19]).
Fig. 2.5 illustrates the important role of this parameter: if it is too large or
too small, the estimated data distribution will not be accurate.

As for the sketch size, the analogy with compressive sensing suggests
that m should scale with the "sparsity" of the considered "low-complexity"
candidates Py, e.g., m 2 p if there are p parameters to estimate (0 €
IR?). Numerical simulations validated that for GMM [KBGP18] and for
k-means [KTTG17] this is indeed the case. For example, compressive k-
means succeeds as soon as m 2 Kd, where Kd is the amount of parameters
we seek (d coordinates of K centroids).

Other tasks and sketch constructions In this thesis we will focus on com-
pressive k-means and compressive GMM with random Fourier features
sketches, but for completeness, we briefly mention other tasks and fea-
ture maps that have been considered in the literature. Those are semi-
parametric models, to which Remark 2.16 applies.

Compressive PCA was proposed in [GBKT17], and numerically validated
in [Cha20]. Instead of RFE, this approach relies on random quadratic fea-
tures, where complex exponentiation is replaced by t + t2, i.e., Prqrp(x) 1=
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Fig. 2.5 We consider a 2-d dataset of three clusters (blue points), sketched
with RFF associated to a Gaussian kernel with scale . Top row: for a fixed
finite sketch size m, we plot the landscape (z, ®(c)) as function of a test
vector ¢, i.e., the criterion used to select the first centroid ¢ in CLOMP for
k-means. We plot this for three varying sketch scales o (with o that increases
from left to right). This intuitively illustrates how the sketch "views" the
data distribution. Bottom row: the related kernel mean embedding (2.33),

px(Py) = k% Py, i.e., what the top row approximates as m — co.
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[(w]—-rx)z]]'.”zl. The resulting sketch can also be seen as a random compres-
sion operation A acting on the data covariance matrix, z = K(XXT).

In [SKD19], the authors consider compressive Independent Component Anal-
ysis, which follows a similar approach, but where the fourth order cu-
mulant tensor is compressively sensed instead of the covariance matrix.
In [SGD19], a scheme was proposed to perform compressive subspace clus-
tering by sensing the correlation matrix of a Veronese embedding of the

data, although computational gains are possible only in small dimensions.

2.5.3 Theoretical guarantees

One important achievement of the compressive statistical learning frame-
work is the development of strong statistical learning guarantees, in the form
of probabilistic bounds on the excess risk (2.6), as usually considered in
the SL framework (see Sec. 2.1). Those bounds guarantee that, with high
probability 1 — §, the compressive learning solution 8 from (2.39) is not
much worse than the optimal solution 8* (i.e., the minimizer to the true
risk R(6; Pp)) by an error 7, i.e.,

IP[R(6; Py) — R(6%;Py) < 5] >1—0.

By another analogy with compressive sensing (see Subsec. 2.2.2), the
strategy deployed in [GBKT17] to prove such a bound is to relate it to a
form of Lower Restricted Isometry Property (LRIP). Similarly to (2.28), the
LRIP is defined as, for some constant ¢ > 0,

P —Qllr <YI|AP)—A(Q)|l,, VP,Qeg. (2.41)

On the left, the risk-induced metric || P — Q|| is an instance of an Integral
Probability Metric (2.32), where the family of test functions are the loss
functions for all possible parameter vectors, ie.,, F = {{(0,-),0 € O}.
Intuitively, this quantity captures how different the risk with respect to
P and with respect to Q is: if ||P — Q||z is small, then we expect that
R(6;P) ~ R(6; Q), which means that solving a machine learning task
with respect to P or with respect to Q is roughly equivalent. On the right,
the low-complexity model set G is the set of all possible model distributions
Py, ie., G :={Py, 0 c O}.

Intuitively, the LRIP thus ensures that the sketch accurately encodes the
machine learning task: for any pair of distributions P, Q that are of inter-
est in solving the task, if the sketch of those distributions are close, the
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LRIP guarantees that those distributions are indeed roughly equivalent
from the point of view of the risk objective. More precisely, the results
from [GBKT17] ensures that if the LRIP holds, then the excess risk is bound
given by

1 = D(Po,G) + | A(Po) = A(Px)]2,

where the first term is a modeling error, a "distance” between the true data
distribution Pp and the model set G, and the second term is a sampling error.
This bound can be put in correspondence with (2.27) in usual CS.

It then remains to prove the LRIP holds, which typically holds with
high probability over the draw of the feature map ®, thus defining the
probability of failure J in (2.41). For k-means and GMM with RFF sketches,
this is done in [GBKT20]. Without entering into the details, the strategy
relies on using the MMD (6.11) Dy (P, Q) as the intermediary between
[A(P) — A(Q)[l2 and [P — Q|

The theoretical guarantees of CL are further detailed in Chapter 4.
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Asymmetric Random
Periodic Features

not about the compressive learning (CL) framework. To be more

precise, recall that in compressive learning we study the sketch of
a dataset given by the average of random features zy := ¥, ®(x;). In this
chapter, we temporarily "forget" about the averaging operation, and focus
on the individual random features z(x;) := ®(x;). The obtained results will
serve as main building block in Chapter 4, when we re-introduce the av-
eraging operation: from a "macro" point of view, the role of this chapter
is thus to establish preliminary results for the next one (which is about
quantized compressive learning). However, as argued below, the setting
studied in this chapter is also of independent interest.

Concretely, this chapter formally introduces the general framework of
asymmetric random periodic features, where two signals of interest x,y are
observed through random periodic features z¢(x), zg(y): random projec-
tions followed by a general periodic map f or g, which is allowed to be
different for both signals. We derive the influence of those periodic maps
on the kernel (i.e., the similarity measure) xs¢(x,y) that is approximated
by their dot product (z¢(x),z4(y)) =~ &fe(x,y). This result generalizes
earlier results from (symmetric) random periodic features (introduced in
Section 2.2.3) which showed in particular that a simple quantization of ran-

THIS chapter is a bit special in that it is (despite the title of this thesis)
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dom Fourier features (corresponding to replacing the complex exponential
by a different periodic map that takes binary values, which is appealing
for their transmission and storage), distorts the approximated kernel. As
we will see, a remarkable consequence of our analysis is that when the
features of only one of the two signals are quantized, the original kernel is
recovered without distortion.

The main achievement of this chapter is to prove uniform (probabilistic)
error bounds (that is, bounds on the deviation |(zf(x), zg(y)) — K¢ (x,y))
holding for all pair of signals picked in an infinite low-complexity set. In-
terestingly, our results allow the periodic maps to be discontinuous, thanks
to a new mathematical tool, i.e., the mean Lipschitz smoothness. We then
apply this generic framework to semi-quantized kernel machines (where only
one of the signals has quantized features and the other has classical ran-
dom Fourier features), for which we show theoretically that the approxi-
mated kernel remains unchanged (with the associated error bound), and
confirm the power of the approach with numerical simulations.

This chapter mostly coincides (often verbatim) with the content of our
publication "Breaking the waves: asymmetric random periodic features for
low-bitrate kernel machines" [S]20a] (in Information and Inference), with the
notable exception of an extra section at the end (indicated by a star *).

3.1 Introduction

3.1.1 Motivation

Rather than to directly process high-dimensional signals, it is often more
efficient to first summarize them to their main features. This assumes that
these capture essential information for the considered processing, such as
the proximity of any pair of signals. Mathematically, the signal summa-
rization is modeled by a feature map ¢ from the signal space X to the fea-
ture (or embedding) space £. This map ¢ transforms the representation of
signals while encoding some aspects of their geometry; loosely speaking,
this can be written as D¢ (¢(x),¢(y)) =~ Dx(x,y) for any pair of signals
x,y € X, where Dy is the preserved geometric quantity (such as an inner
product or a distance), and D¢ is an evaluation procedure acting only on
the signal features. This approach is useful whenever the features ¢(x) are
easier to process with respect to some critical computational resource (e.g.,
memory usage, computing time)—often at the price of an approximation
error (as suggested by the approximation symbol Dg ~ Dy, above). The
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map ¢ is most often than not a randomized function (drawn from a dis-
tribution). There are essentially three main ways to save computational
resources with features: (i) leveraging dimensionality reduction (i.e., ¢(x) is
encoded by much less coefficients than the dimension of x), such as in com-
pressive sensing techniques [FR17], where typically the “embedding” ¢ is
linear and Dy and D¢ are the Euclidean distances (as explained in Sec-
tion 2.2.2); (ii) using mappings that linearize the evaluation of an otherwise
nonlinear quantity, such as random Fourier features (RFF) [RR08], where
Dy is a kernel x and Dy is simply the inner product (as explained in Sec-
tion 2.1.4); and (iii) quantizing features, where ¢(x) produces a quantized
output that can be encoded with a highly reduced bitrate compared to the
initial signal, allowing reducing the memory and/or transmission load, as
well as paving the way for hardware-based procedures (as explained in
Section 2.2.3). This quantization objective is often combined with either (i),
as in quantized compressive sensing [BJKS15, GLP*13, Dir19], or (ii), as in
one-bit universal embeddings [BM15]. As made clear below, our contribu-
tions also target the combination of (ii) with (iii).

In all those applications, it is almost always assumed that the available
features for the two signals x, y € £ come from the same feature map ¢ (we
say the features are symmetric). However, we can legitimately wonder if
removing this assumption, i.e., accessing the signals through features ¢(x)
and 1 (y), where we have the freedom to set ¢ # , can further reduce
specific computational resources. The practical interest of this relaxation—
that we call asymmetric features—arises when the two signals come from
different sources (i.e., when the setting is intrinsically asymmetric): for ex-
ample, those sources might have different resources (such as memory or
power) at their disposal, and will therefore benefit differently from tech-
niques (i)-(iii).

Here, we are interested in asymmetric features for linearizing kernel es-
timations, as explained in (ii). In particular, we work with random periodic
features (introduced in Subsec. 2.2.3, and further detailed in Sec. 3.2); those
are defined as ¢(x) := f(QTx + &) and ¢(y) := ¢(QTy + &) with Q a ran-
dom projection matrix, § a random dither, and f, g two periodic functions.
We thus generalize the context of random Fourier features [RR08], where
f(-) = g(-) = exp(i-) (the complex exponential), by “breaking the waves”
with possibly discontinuous, distinct functions f and g (as described in
Sec. 3.4). We show how those features can be used to approximate shift-
invariant kernels «, i.e., (¢(x), ¥(y)) = x(x,y), in expectation over the ran-
dom quantities 2, {. Our motivating use-case is to combine this approach
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with harsh quantization of some features, objective (iii), as we explain in
the next paragraph. However, all our developments are generic, and of in-
terest for any machine learning algorithm that processes or takes decisions
from the local geometry of data.

Semi-binary kernel machines as a motivating application: If one of the
periodic functions incorporates the quantization of the feature vector (say,
the one-bit universal quantization, or square wave functiong : R — {0,1}
[BR13]; see Fig. 3.2), then that feature vector can be stored or transmit-
ted (or both) much more efficiently than the usual (infinite-precision) ran-
dom Fourier features. Consider for example a machine learning context,
where a kernel method [SSB"02] such as a Support Vector Machine (SVM)
[BGV92] has been trained in advance on some dataset X = {x;}/' ; C X
(see Section 2.1 for details on kernel methods and SVM). To actually use
this model for prediction on a new signal ' € X, the physical device
that records it must either communicate with a server where the infer-
ence is performed remotely (Fig. 3.1a), or implement this model directly
(Fig. 3.1b); in either case, this is an expensive operation whenever this de-
vice is under tight computational resources constraints, and quantization
of feature vectors is potentially very helpful.

In the first scenario (inference done remotely on a server), we might
quantize the feature vector of the query signal, ¢(x’) € {0,1}" (but not
the feature vectors of the dataset 1(x;)). This allows to heavily reduce
the bitrate when communicating this vector to the server, and even paves
the way for computing those features directly in hardware, e.g., relying on
voltage-controlled oscillators [YKJCO8]. In the second context, we could
conversely binarize the feature vectors of the dataset so that ¢(x;) € {0,1}"
for all x; € X, but not the incoming query vector @(x')!. The advantage
here is that the memory needed to store the model is heavily reduced, with
additional computational benefits coming from the embedded processing
of binary values. This idea has received significant attention in the litera-
ture, e.g., following [JDS10] for nearest-neighbor search.

For both of those examples, the main question that we seek to answer
is to quantify the loss of accuracy (induced by quantization) as a function
of the feature vector length m. More precisely, our goal is to obtain (prob-
abilistic) guarantees on the decay of the kernel approximation error as a
function of m, that hold uniformly for any pairwise comparisons of signals

!t is even possible to encode only a subset of the dataset features for models that only
need to access some entries, such as SVM with the support vectors.
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Kernel-based
algorithm

Fig. 3.1 Two motivating applications of our results (from Sec. 3.5, in
green): combining one-bit universal features with usual random Fourier
features yields the same desired kernel x. (a) A “client” device records a
“query” signal x’, and transmits its quantized features z;(x’), encoded ef-
ficiently as only m bits, to a “server” device that can evaluate the kernel
similarity with the rest of a dataset from their usual n full-precision RFF
{z(x;)}! ;. (b) A lightweight device implements a kernel method with
very low memory requirements, only having to store {z,(x;) }!_; the n one-
bit feature vectors of the dataset instead of the full-precision ones, provided
the usual RFF z(x) are used for the incoming query vectors.
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taken an infinite (but compact) set X. In this case, the main challenge lies
in dealing with the discontinuous nature of the quantization operation—
handling discontinuities is thus one of the key features of this work.

3.1.2 Related work

Before detailing the elements of our approach, we find useful to mention
a few related works, showing how they inspired us, and stressing their
connections and differences with our contributions.

Quantization of (symmetric) random Fourier features: The construction
of the general random periodic features considered in this work is instanti-
ated in Section 3.5 to the case where the corresponding periodic map is the
universal quantizer (or square wave function). As mentioned in Subsec-
tion 2.2.3, this approach was introduced in [RL09, BR13] as a binary map
preserving local distances (i.e., up to a given radius), under the name uni-
versal quantized embedding. Those features have subsequently been used
for kernel methods in [BM15], which is similar to the framework we pro-
pose but where not one but both signal features being compared are quan-
tized in a symmetric fashion, which distorts the kernel to be recovered.
This line of work was further generalized is [BRM17], where uniform guar-
antees are derived for generic periodic function (possibly discontinuous)
instead of the one-bit universal quantizer, holding on infinite signal sets.
This defines the random periodic features approach (see Section 3.2 for de-
tails) that we also consider; we provide an in-depth description of how our
results relate to (and complement) those from [BRM17] in Appendix C.

Back to the particular problem of quantizing random Fourier features,
another line of work [ZMDR18] shows that a specific stochastic quanti-
zation hardly harms the generalization performance of RFF-based algo-
rithms. The ultimate objective of this last work is, however, fairly differ-
ent from ours: the authors seek to reduce the memory requirements during
training by performing a more sophisticated quantization, and then use the
full-precision RFF for the subsequent inference stage; on the other hand,
our objective is to provide a simple quantization scheme to reduce the re-
sources during the inference stage, without concerns for how the training was
performed.

Asymmetric features and quantizations: The possibility to use asym-
metric features has been explored for linear embeddings in [RKL19], as
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an additional degree of freedom to minimize (in a data-dependent fash-
ion) the average error of the distance estimation. In [DCLO0S8], weighted
universal embeddings are used for distance estimation, where the weights
depend upon one of the two signals (which makes the scheme asymmetric)
to decrease the error on this estimation. Closer to our context, in [GPGL13],
it is experimentally shown for a broad set of feature maps? that quantizing
the features of the dataset but not of the query (as in scenario Fig. 3.1b)
significantly improves the performance compared to quantizing both fea-
tures. Similarly, the authors of [LL19, Li19] recently considered linear ran-
dom projections (with the same matrix) of two signals that have been quan-
tized with different quantization levels.

3.1.3 Chapter contributions

We provide in Sec. 3.2 several preliminary elements as well as important
concepts of the relevant literature: random Fourier features and their (pos-
sibly quantized) extension to any periodic nonlinearity. We then start by
analyzing how the kernel approached by asymmetric random periodic fea-
tures behaves in expectation (in the asymptotic case), which is proved in
Sec. 3.3. Our main results come in Sec. 3.4, where we prove uniform er-
ror bounds of the kernel approximation for infinite signal sets. In order to
do so, we introduce a new tool, the mean Lipschitz smoothness property.
Next, we apply our general results to the semi-quantized setting motivated
above in Sec. 3.5, and illustrate with numerical experiments in Sec. 3.6. To
further establish the generic nature of our results, we also instantiate them
on modulo random features and complex extensions in Sec. 3.7, before con-
cluding in Sec. 3.8.

For the interested reader, Appendix C relates our approach to the con-
text of geometry-preserving embedding (or coding) developed in [BRM17],
solving in the same time an error in the proof of one of their results

3.1.4 Notations specific to this chapter

We will often consider bounded 27-periodic functions f,g : R — C for
which the 2-norm and the infinity norm read || f||? = 5= 027r |f(t)[>dt and
[ flleo := supscpoon |f (£)|, respectively, and the inner product of f and g

is (f,g) = ~ 027'( f(t)g*(t)dt. For brevity and clarity, we will sometimes
refer to a function using the “dot” notation, e.g., exp(i-) for the function

2Such as Locality Sensitive Hashing, universal embeddings, and several variants of PCA.
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t— exp(it) € Cfort € R.

We use the convention where the (d-dimensional) Fourier transform of
a function f : R? — C reads f(w) = (Ff)(w) := (2%),, JRre e_i”T“’f(u)du,

with inverse (F~1f)(u) := Jri ei”T“’f(w)dw. The same convention is
used for the Fourier transform of finite measures on R?. In all our develop-
ments, except if specified differently, C,C’,...,¢,c/,... > 0 denote universal
constants whose value may change from one instance to the other.

3.2 Preliminaries

We introduce here several fundamental concepts supporting our approach.
We first precise the kind of signal space we consider, as well as how sig-
nals are compared through a kernel, before to briefly explain the principles
sustaining the definition of random Fourier features (RFF). Next, we gener-
alize RFF to any random periodic features for a family of bounded periodic
functions.

3.2.1 Signals and kernels

In this work, we focus on signals belonging to a bounded signal space
T C R? having finite Kolmogorov 7-entropy H,(Z) for any radius 7 > 0
[KT61]. This entropy, defined as H; (X) := log C;(X), is related to the cov-
ering number Cy (X) of X, the cardinality of the smallest finite subset of X
that covers it with balls of radius #. Using the Minkowski sum, this means
that

Cy(Z) :=min{|S|: S C T C S+yBi},

which is finite for any compact set X.

The Kolmogorov entropy measures the intrinsic dimension of X in R¥.
In particular, H,(V NBJ) < Cd'log(1 + %) for any subspace V C R?
of dimension d’ < d [Pis99], and the set of s-sparse vectors Xs := {x €
R?, [|x[|o < s} restricted to the unit ball has entropy bounded by H,(Zs N
Bf) < C-slog(%)log(1+ %), see for example [BDDWO08]. Other bounds
exist for, e.g., the set of bounded group sparse signals [ADR16], bounded
low-rank matrices [CP11], or for specific low-dimensional manifolds [EW15].

At the heart of our study is the comparison of two signals through a
kernel, i.e., a function over pairs of signals x : £ x ¥ — C (in the machine
learning literature, kernels are usually real-valued). Typically, invoking
the so-called “kernel trick” [BGV92], x represents the inner product be-
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tween the input signals x, ' when they are mapped in some implicit fea-
ture space by an appropriate map ¢ : ¥ — H: x(x,x') = (¢(x), ¢(x'))u
for some Hilbert space IH. By definition of the inner product, the kernel
x must then necessarily be conjugate symmetric (x(x,x") = x*(x/,x)), and
positive definite (p.d.), i.e., for any number 7, Z?le cic;-‘K(xi, x;) > 0 for all
X1,...,xp € Xandcy,...,c, € C.

3.2.2 Random Fourier features

We here succinctly remind the context of random Fourier features (RFF);
see Subsection 2.1.4 for a gentle introduction. RFF are implicitly built on
Bochner’s theorem [Rud62]. This theorem states that a shift-invariant con-
tinuous kernel x(x,y) = x*(x — y) (for some x* : £ — X — C) is positive
definite if and only if it is the (inverse) Fourier transform of a nonnegative
finite measure A, i.e.,

« positive definite < k*(u) = (F1A)(u) = [Ra ei“’T”dA(w). (3.1)

In particular, assuming w.l.0.g. the normalization x(x,x) = x*(0) =1, A is
a probability distribution over R?, and the kernel can be written x*(u) =
Eion ¢@' The key idea of random Fourier features [RR08] is thus to con-
struct low-dimensional features z(x), z(y) whose inner product approxi-
mates the kernel «(x, y) by Monte Carlo sampling of this expectation.

Definition 3.1 (Random Fourier features). Let x(x,y) = «*(x —y) be a
shift-invariant p.d. kernel, normalized such that «*(0) = 1, with Fourier
transform A = Fx*. Given a target dimension m, the associated “complex”
random Fourier features are

z(x) == ﬁ exp (i(QTx—i— (',‘)) eC", (3.2)
with random projections (or “frequencies”) Q = (wy, - -+, wy) € R
generated as O ~ A", ie., with w; ~jj4 A for j € [m], and a random
dither & € R™ generated as § ~ U™ ([0,271)), i.e., with &; ~j;4. U([0,27))

for j € [m]. We also define the “real” random Fourier features zcos(x) as
R[z(x)], the real part of those features:

Zeos(X) := ﬁ cos (QTx+ @') € R™, (3.3)
Remark 3.2. The dither ¢ was initially introduced in [RR08] when only the
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real RFF zos(x) were used; in the (more widely used) complex case ¢ is
not necessary (see [SS15b] for an in-depth comparison of the “real” versus
“complex” random Fourier features). We still included it in this definition
for the sake of consistency with Def. 3.5 below.

By direct application of Bochner’s theorem, the inner product of RFF
indeed approaches (in expectation over the draw of the frequencies ) the
target kernel: E(z(x),z(y)) = x(x, y). Moreover, for a finite feature dimen-
sion m, the error of the kernel approximation ¥(x, y) := (z(x),z(y)) can be
uniformly bounded (i.e., bound the absolute error |K(x,y) — «(x,y)| for all
values x, y in X)), with high probability on the draw of () (we work with dif-
ferent normalization choices, so the result we present here differs slightly
from the initial bound [RR08, Claim 1]). Finer bounds can be found, among
others, in [SS15b,SS15a].

Proposition 3.3 (Uniform kernel approximation error for RFF). Let X be
a compact set, and z(x) be the RFF defined above. Assume that there exists an
associated constant Cp, such that

Eop|w a| <Cpllala, Vac R (3.4)
Provided that, for e > 0,
m> Ce e, (),
the kernel approximation k(x,y) = (z(x), z(y)) has error uniformly bounded by
|i€(x,y) — K(x,y)‘ <e VxyekL
with probability exceeding 1 — C’ e=cme,

Proof. This version of the RFF approximation error is obtained as a partic-
ular case of our Prop. 3.15; see [RR08] for the initial result. O

The constant C5 defined in (3.4) characterizes the smoothness of the
kernel (if the kernel is smoother, it exhibits less high-frequency content,
and Cp will be lower). In most of the RFF literature, this constant is bounded
by the Cauchy-Schwarz inequality as CA = E,a ||w|2. Then, one can
(as done in [RR08]) further bound E, ||wl|2 < oa where 012\ is the sec-
ond moment of A, equivalent to the kernel curvature at the origin, i.e.,
C3 < 0} = Eyon @]} = V?k%|4=o, with V? the Laplacian operator.
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However, for specific distributions, using the Cauchy-Schwarz inequal-
ity in high dimension leads to a loose bound of Cp. For example, if the
covariance matrix of w is upper bounded by 31, for some 03 > 0 (if,
eg., F ~1A is the Gaussian RBF (“radial basis function”) kernel with ra-
dius 1/0%, A is isotropic [Ver12], or if each component of w are i.i.d. with
variance bounded by 7% ) then

2
(Epon lw'al)” < w]EA lw al? = aT(w]EAwa)a

<a' 031 a =03 al3.

In this case we obtain Cp = 0, while Cauchy-Schwarz gives Vd -,
hence overestimating the constant by a factor v/d.

Example 3.4. Consider the simple case where the signals of interest have an
fy-norm smaller than 1 and lie in a union of S subspaces of RY, each with
dimension s. This signal space model encompasses, for instance, & = B4
(that is, where S = 1 and s = d), the set of bounded s-sparse signals in
R for which § = (f) < (%4)* and each subspace (one per fixed sparse
signal support) has dimension s, or more advanced models with structured
sparsity [BCDH10, ADR16]. For such a model, the Kolmogorov entropy is
bounded by Cs - log (%) < Hy(X) < C's-log (1+ %) + log S (see, e.g.,
[JC17, Lemma 10]). Assume that we target the usual Gaussian kernel with
unit bandwidth, hence Cp = 1. In this case, the RFF kernel approximation
error is uniformly bounded over X, with high probability, provided that

the number of features satisfies m > Ce™2 (s log(é) +log S). For instance,
ed )

for bounded s-sparse signals we need m > Ce~2slog(£L

3.2.3 Random periodic features

A crucial generalization to RFF has been proposed in [BRM17], where the
complex exponential is replaced by a generic periodic function f. We refer to
this approach as random periodic features (RPF). Without loss of generality,
we make the following normalization assumptions throughout this work:
f has period given by 27, is centered (zero mean), and takes (absolute)
values bounded by one. We note this compactly as f € PF, with

PF:= {f: R — C| f is 27-periodic, [J™ f(t)dt =0, ||f[e < 1}.
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Functions of PF can be expressed as a Fourier series of the following form

f(t) = ez KX, where F:= L foznf(t)e’iktdt. (3.5)

Note that f € PF implies Fy = 0 (because f is centered) and |F| < 1
(because f is bounded).

Definition 3.5 (Random periodic features). Let f be a generic periodic
function, normalized such that f € PF, and A a probability distribution
on IRY. Given a target dimension 1, the associated random periodic features
are

zp(x) = ﬁ flQ'x+g ecm, (3.6)

with a d x m random projection matrix Q := (wy, -+ ,wm) ~ A", and a
random dither & ~ U™ ([0,27)).

Remark 3.6. As the complex exponentiation satisfies exp(i-) € PF, this def-
inition includes the classical RFF, with z(x) = zexp(i)(¥). The real RFF
Zeos(x) are also a particular case of this definition.

The geometry induced by such generic features can be characterized
the inner product &7 ¢ (x,y) := (zf(x), z¢(y)). As explained by the follow-
ing result (adapted from [BRM17, Theorem 4.4]), this product is associated
with a modified kernel k¢ ¢(x,y) (the rationale for these notations is clari-
fied in the next section).

Proposition 3.7 (Kernel from symmetric RPF). The inner product of random
periodic features (3.6) approaches, on average, a kernel

K5, (x,y) = E(zp(x), 24 (y))
that is shift-invariant and given by
K50 Y) = Tiez R (kx— ) =2 (x—y), ()

where k*(u) = (F~1A)(u) is the shift-invariant kernel associated with the dis-
tribution of € in the RPE.

Proof. This version is obtained as a particular case of Prop. 3.8; see [BRM17]
for the initial result. O

The modified kernel x¢ r is thus a scale mixture of the initial kernel x
(that is approached by the “classical” RFF), where the weight of scale k is
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K(x,y)
—== fgqT,y)

= — yll:

-1 0.0— i -
-2 -7 0 g 2m 0 2 A

Fig. 3.2 (Left) The solid black curve represents the universal quantiza-
tion function q(t) (with g € PF) defined in (3.8). Up to a shift and rescaling,
this function corresponds to the least significant bit of a standard uniform
scalar quantizer. In dashed green, we display the related integrand I(t),
with § = 0.35. This quantity refers to the proof of the mean smoothness
(Def. 3.13) of g in Prop. 3.19 (Sec. 3.5). (Right) When drawing Q) from a
Gaussian distribution A = N(0, I;), the associated RFF recover the Gaus-
sian kernel x (in black), but the RPF with universal quantization approxi-
mate a “distorted” kernel x, ; (dashed red).

given by |F|%. In the non-asymptotic case, the authors of [BRM17] show
that, for all pairs of vectors taken in a finite set X of size N, k¢ (x, y) quickly
concentrates around ¢ ¢(x, y) when m is large compared to log N; the de-
viation error scaling as O(y/log N/m) when m increases. Our result in
Prop. 3.15 provides a uniform approximation bound valid for infinite sets.
Random periodic features were introduced as a general theoretical frame-
work to analyze the so-called universal quantization embeddings [BR13];
those binary embeddings encode the local distances (i.c., the distances be-
low a given threshold) on an efficiently small number of bits. This embed-
ding relies on the “one-bit universal quantization” given by 9, : R —
{0,1} : t — Oa(t) =11if (2k—1) < t/A < 2k for any k € Z and 0 other-
wise. It can be interpreted as the least significant bit of a usual, plain scalar
quantizer with stepsize A, and visualized as a square wave: see Fig. 3.2,
left. Here, we will for convenience use g instead, its normalized equivalent
in PF,

: 2(-1)7 ifkodd
q(t) := sign ocos(t) = Y rez Qrekt,  with Q = i(—1) 7 ifkodd,
0 if k even.

(3.8)

Using the universal quantization as periodic nonlinearity is appealing
because z;(x) € {—1,+1}", which can thus be encoded/transmitted by
only m bits. However, as predicted by (3.7), the approximated kernel is
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modified, as illustrated for the Gaussian kernel Fig. 3.2, right. Moreover,
proving uniform kernel approximation bounds (as in Prop. 3.3) for infinite
sets X is specially challenging when the nonlinearity f presents disconti-
nuities (which is the case when f = g, for example). In [BRM17], the au-
thors introduced a formalism (the T-part Lipschitz functions) to deal with
this problem and to obtain uniform approximation bounds on infinite sig-
nal sets for the universal embeddings. As we explain in Appendix C, the
proof relying on this approach is however wrong, which motivates us to
introduce another tool, the mean Lipschitz smoothness, to deal with dis-
continuous maps.

3.3 Expected kernel (asymptotic case)

Following the considerations of the Introduction, let us now consider the
asymmetric features setting where a pair of signals of interest, x,y € ]Rd, are
available only through their random periodic features, z f(x) and z¢(y), as
defined in (3.6). Those features are allowed to result from different periodic
maps f,g € PF, but the preceding projection 2 and dithering ¢ are kept
identical.
In this section, we characterize the properties of the expected kernel yielded

by the expectation, over the draw of () and ¢, of the following “asymmet-
ric” inner product:

Krg(x,y) o= (zf(x), 25 (y))- (3.9)

This asymmetric RPF kernel is defined from

kg%, y) = Eq ¢ (2¢(x), 25 (y))
= 5 L Eog flw] x+8)) g (w]y +8)) (3.10)
=By, enti(o2m) f(@ X +8) (w0 y + ).
In the two bottom lines, we used the fact that w; (and ¢;) are independently
and identically distributed, for all j, with w; and ¢; mutually independent.
Remark that by the law of large numbers, « , thus corresponds to the ker-

nel that the asymmetric inner product ¥, approximates when we let the
feature space dimension m grow to infinity.

Proposition 3.8 (Expected kernel for asymmetric periodic random features).
Let zy and zg be random periodic features, associated with functions f,g € PF,
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frequencies w;j ~jjq. A = Fx® and §; ~jjq. U([0,27)). For any pair x,y €
IRY, the expected kernel Kre(%,y) = Eq g (zf(x),zg(y)) satisfies

Kg(6) = Thez HGi e (k(x —y)) = 3 (x—y).  (311)

Although here expanded as an infinite series, this kernel is bounded |xf| < 1
since f,g € PF.

Proof. Starting from the last line of (3.10), and decomposing f and g as their
Fourier series,

Kf,g(x, y) = ]Ew,§ EkeZ Zk’EZ FkG;, eik(“’Tx+§)g—ik/(wTy+§)
= Tk FeGpy Bomn €97 KD B 105y, el 6K
= Yir F Gk (kx — K'y) 6y o (3.12)
= LiBGi *(k(x — ),

where in the third line we used Bochner’s theorem (3.1) and the orthog-
onality of complex exponentials on one period: % 02” eikte=iKtg — O -
O

Example 3.9. As will be further developed in Sec. 3.5, when f(-) = cos(-)
and g(-) = ¢(-) the universal quantization defined in (3.8), we observe
that the expected kernel is (up to a proportionality constant) exactly the
“initial” kernel approximated by the RFFE, i.c., kcosq (¥, y) = 2x(x,y).

The dither ¢ plays here a crucial role: it cancels out (in expectation) the
“cross-terms” in (3.12), each related to F G}, «*(kx — k'y) = F.G}, x(kx,K'y),
that have different scales k # k’ for x and y. As a consequence, the expected
kernel is—as any kernel should be—conjugate symmetric, i.e., k¢, (x,y) =
KJ*(, g(y,x), despite the asymmetry of its empirical approximation, i.e., de-
spite that Kf¢ (x,y) # f} g(y, x). The dithering can thus be thought of as a
means to symmetrize, through expectation, the kernel associated with the
asymmetric features inner product.

For the same reason, the dithering ensures that the expected kernel re-
mains shift-invariant; Prop. 3.8 provides xf . (x,y) = KJAC, g(x —y), where «*
in (3.11) is the kernel related to the frequency sampling pattern A. The ex-
pected kernel is thus a scale mixture, a linear combination of copies of k%,
scaled (actually contracted) by an integer factor k (which is non-zero, since
Fy = Go = 0), and weighted by coefficients F;G; . In general, we expect this
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scale mixture x% , to be narrower than the initial kernel x* (or more spread
out in the frequéncy domain).

In general, however, the positive definiteness of ¥ does not imply that
K, is p.d., since taking, for instance, § = —f (ie, FGf = —|F[* < 0)
induces that ¢ ¢ (x,x) = — ¥ |Fe|?x2(0) < 0 for all x € RY. Whether Kfg
is a positive definite kernel or not depends on the phase synchronization
between the Fourier coefficients of f and g. A sufficient condition for «y ¢
to be p.d. is to ensure that F G} € R™ for all k, as verified by taking f = g
(as explained in Appendix C), or the combination f = g, g(-) = cos(+) in
Sec. 3.5 and Sec. 3.6.

Remark 3.10. In light of (3.11), we could decide to normalize our approach
differently. Assuming that f,¢ € PF are not orthogonal, i.e., (f,g) # 0, we
can define, for x,y € %, the normalized kernels

R y) = o (z7(2), 25(0)),
k(%) = forrg (%), (3.13)
A = LA
Kfo(u) = (f,g)Kf,g(u)‘
Since k*(0) = 1 and, from (3.11), (f,8) = Lk G} = K?’g(O), (3.13) ensures
that, for any x € X, Exfq(x,x) = kro(x,x) = kj%rg(o) =1 = x*(0). With-
out guaranteeing that s, is p.d., this normalization prevents the coun-
terexample f = —g to lead to a kernel with negative value on the ori-
gin. For clarity, we do not base our following developments on % ¢(x, )

but we will refer to this useful quantity in Sec. 3.5 when, for f = g and
<(+) = cos(+), we will need to compare kj% g o the RFF kernel x*.

Let us now provide an alternative expression of the expected kernel
Kg(%,y) = K?, g(x — y), that will prove to be useful in the next section.

Lemma 3.11. Define the correlation h between f and g,

() == (f*)(t) = 2= [T f(0)g* (T — 1) dr, (3.14)

where §(t) := g*(—t) denotes the conjugate reverse of g, and * the convolution
operator on [0,27t]. The expected (shift-invariant) kernel K?, o can be expressed by

1o (1) = Epon hwu) =Eyon(f* ) (w ' u). (3.15)

Proof. By the convolution theorem, the Fourier series coefficients of 1 are
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given by Hy = F.G[. The result follows from plugging this fact into the
proof of Prop. 3.8. O

Lemma 3.11 can be interpreted as an expansion similar to the one provided
by Bochner’s theorem: whereas the initial kernel x*(u) = [ ei“’T”dA(w)
can be expressed in a basis that is a family complex exponentials el@ " with
“coordinates” given by A, K?/ g(u) = [h(w"u)dA(w) can be expressed in
a basis that is the family of functions {# — h(w'u) : w € R%}, another

type of 2r—periodic functions (replacing the complex exponential exp(i-)
with h(+)).

3.4 Approximation error analysis (non-asymptotic case)

In the practical setting where the vectors z¢(x) and z¢(y) must be quickly
processed or stored in memory, their size m must be as small as possi-
ble. On the other hand, setting m too small hurts the empirical estimation
Kre(x,y) of the expected kernel ¢4 (x,y) = EXf¢(x,y). To understand
this trade-off, we are thus interested in a probabilistic bound for the (ab-
solute) kernel approximation error ks, — k|, as a function of the RPF
dimension m. We give here an answer to this question under generic as-
sumptions, and show how to apply it in a concrete situation—for asym-
metric kernel estimation with one-bit quantized RFF—in Sec. 3.5.

3.4.1 Non-uniform approximation error

Ultimately, we want to obtain a (probabilistic) bound for the kernel ap-
proximation error that holds uniformly over all x,y € X. First bounding
the error for one fixed pair (x,y) is often used as an easier intermediary
step. This is provided by the following proposition.

Proposition 3.12 (Non-uniform kernel approximation error from asym-
metric periodic random features). For two functions f,g € PF, let z¢, z¢
be random periodic features associated with frequencies Q) and a dither ¢. For
any fixed pair (x,y) € R? x RY, the inner product Kf,¢(x,y) = (zf(x), zg(y))
concentrates, in probability over the draw of QO ~ A™,& ~ U™([0,27)), around
Kra(xy) = Ea g (z7(x), z(y) as

P [[Rr(x ) —xp(xy)| < €] > 12072, (3.16)
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Proof. We rewrite (z¢(x),zg(y)) = L YjZj, with the random variables
Z; = f(w]-Tx +&j)8" (ijy + &j). The Z; variables are i.i.d., have mean
Kf,¢(%,y) by definition of the expected kernel (3.10), and are bounded by
1Zi] < [|flleollgllc < 1 (because f,g € PF). The result follows by Hoeffd-
ing’s inequality. O

3.4.2  Uniform approximation error

We now want to extend the error bound in Prop. 3.12 to hold not only
for one fixed pair (x,y) but simultaneously over all pairs (x,y) € £ x X;
this is called a uniform bound. The classical argument invoked in this type
of proofs (e.g., [RR08, BDDWO08, PDG17]) goes as follows. If X is a finite
set (of finite cardinality |X|), the uniform bound is obtained by applying a
union bound over |Z|? instances of Prop. 3.12 (one for each pair in & x ).
In the case where ¥ C R¥ is an infinite but compact set, the strategy is to
bound the approximation error on a finite set X, that covers X by balls of
some radius > 0, then to extend this bound by some notion of continuity
(smoothness) over the 77 —balls. We then obtain a bound which holds over
Xy + U]Bg D %, which concludes the proof.

In our setting, the last step of this proof technique would ideally use
Lipschitz continuity; we say that a function f : R — C is Lipschitz continu-
ous with constant Ly if, for all t,t' € R, [f(t) — f(t')| < L¢|t — #'|, which is
equivalent to

VteER,VS >0, sup {|f(t+7r)—f(t)|} <Lf-d. (3.17)
re[—6,0]

However, this strategy fails when any of the maps f or g is not Lipschitz
continuous (e.g., when they present discontinuities, such as the “square
wave” universal quantization map g from (3.8)). To be able to include such
maps in our analysis, we must define a more permissive notion of smooth-
ness, just as the T-part Lipschitz property defined in [BRM17] (but without
the limitations explained in Appendix C). In this work, we rather intro-
duce the concept of mean Lipschitz smoothness property for periodic function
in PF. Intuitively, a periodic function is smooth in the mean Lipschitz sense
if its largest local deviation is small on average.

Definition 3.13 (Mean Lipschitz property). Let f : R — C be a generic
periodic function (here w.l.o.g. assumed of period 27r). We say it is mean
Lipschitz smooth with mean Lipschitz constant L? if for all radii 6 € (0, 7T,
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the average maximum deviation of f in [, §] is bounded by Ljf -0

Et24(0,27)) SUPye s, LI f(E+1) = f(£)}

. (3.18)
= 2 Jo T sup,e s {lf(t+r) = f(H}at < L5

The mean Lipschitz property (that we will refer to as “mean smooth-
ness” to avoid confusion with the usual Lipschitz continuity when nec-
essary) can truly be understood as the Lipschitz continuity after an aver-
aging. It is reminiscent of the mean modulus of continuity from [Sz437,
Wik72] but where the order of the supremum and averaging operations
are reversed (which is less restrictive). If f is Lipschitz continuous with
Lipschitz constant L¢, then it has necessarily also the mean smoothness
property with constant L? < Ly. However, it is possible that L? < Ly (if
the large slopes of f are concentrated on a small portion of [0, 27]), and dis-
continuous function can have a finite L? constant—for example, the square
wave g representing the universal quantization is mean smooth with con-
stant Lg = % (see Prop. 3.19), although it is not a Lipschitz continuous
function. Leaving the detailed proof to Sec. 3.5, the trick is to observe that
the integrand I5(t) = supre[féré]{\f(t +7) — f(t)|} is supported on an in-
terval whose length is proportional to J, as shown Fig. 3.2 left. Moreover,
the convolution of any PF function with a mean smooth PF function yields

a Lipschitz continuous one.

Lemma 3.14. Given two functions f,g € PF, among which f is mean smooth
with constant L?, their convolution (f ) is Lipschitz continuous with constant

Proof. Re-writing (3.17) for (f*g)(t) = A foznf(t —1)g(7) dt gives, since
I8l <1,

sup,c s {1(f+8)(E+7) = (f+g) (D)}

= sup|, s |2k Sy LF(E+7—T) = f(t = T)] g(7) dT]
< ghsupy g JoTIf(EFr—T) = f(t—T)| dr
2 & supy s (T +7) = f(T)] AT < L.

A
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In other words, the convolution of two PF functions, among whom one
of them is mean Lipschitz, is “smoother” than its factors, a property that
comes from the convolution itself (which is to be put in correspondence
with the fact that for f differentiable and g discontinuous, f * g is differ-
entiable). In particular, if both f and g are mean smooth with constants
L? and Lg‘ respectively, their correlation h = f x § is Lipschitz with L <
min(L?, Lg) Coming back to our setting, this fact allows us (by using
Lemma 3.11) to characterize the Lipschitz continuity of the expected kernel
% . With that, we have all the tools to prove our main result, a uniform
bound on the kernel approximation error obtained with possibly discon-
tinuous (but mean smooth) maps.

Proposition 3.15 (Uniform kernel approximation error from asymmetric

periodic random features). Let X be a compact set and f,g € PF periodic

functions with finite mean smoothness constants L? and L?, respectively, and let

Ca < oo such that By, |w"a| < Cpllall for all a (the kernel smoothness
constant).

For all error level € > 0, provided the feature dimension is larger than
m>128- % - Hese(Z), (3.19)

with the constant ¢ = 4CA(L? + Lg + 2min(L?, Lg)), the following kernel ap-
proximation bounds holds uniformly:

[Rrg(xy) —xpe(x,y)| <€ VxyeZ, (3.20)

with probability exceeding 1 — 3 exp(— "é—ff).

Proof. With %, a finite optimal 57—covering of X, any ' € X (resp. y')
can be written ¥’ = x 4 ry (resp. y' = y +r,) for centers x,y € ¥, and
Ty, Ty € nB4. The proof proceeds by defining three events &;, &, & from
which Prop. 3.15 follows, and then by bounding the failure probability of
their joint occurrence. First, for any covering center x € X, we can expect
that the set of m functions h{ : 7B — C defined for j € [m] as h{ (r;x) :=

flw/x+w] r+¢;) contains, on average, few “variations” over the 7 —ball.
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More precisely, defining the largest variation of h{ (r;x) over the n—ball as

HY (1;x) := sup | (r;x) — ] (0;x)|
rG}’]]Bd

= sup |f(w X+ w; 1‘+§]) f(“’ij"'gf)"
rer]IBd

we first assume that, given €; > 0, the event £; holds, with
&1 SUPycs, L -1 H]f(;y;x) < L?inA + €.
Similarly for g, we define the event &, such that
& SUpycy, 1 Z}":l Hf(;y;y) < LgUCA + €.

Next, we suppose that the kernel approximation has error bounded by €3
for all the covering centers x,y € %, i.e.,

&3 SUPy yex, k\f,g(x,y) - Kf,g(x,y) < e3.

Under those events, we establish a deterministic bound for all x’,y using
a chain of triangle inequalities:

‘ff,g(x/r y/) - Kf,g(x// 3//)| = |’/€f,g(x Tty + ry) - Kf,g(x T T,y + ry)|
< 614 6y + 93 + dg,
where the error terms are defined as
01:= K g(x+ 1o,y +1y) —Kpo(x,y+1y),
0= [Kpo(x,y +1y) —Kpo(x, )],
05 = [Krg(x,y) — K5 e(x,y)],
Oy = |kpg(x,y) —Kpo(x+ 1,y +1y)l.

First, we observe that, thanks to &;:

o1 = 4|5y [Flw] (xtr) +8) — flw]x+ &) g (@] + &)

< ||g|\oo% i 1‘f(w X+ w, rx+{;’]) f(w].Tx+§j)’ SnL?CA+61.

A
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Similarly, using &, we get for d,:
= Lo flw] x+8) [ (w] v+ w1y + ) — g7 (@] y+¢)]|
< WLECA + €.
Regarding d3, we directly get from &;:
b5 < sup, e, [Rrg(y) — Kpg(xy) < e,
Finally, for é4, denoting u := x —y, r, = 1y — 1y € 2;7]Bg and using

Lemma 3.11 (also recall that i = f * § is Lipschitz continuous with L;, <

mm(LJ;ﬁ, Ly ¢) by Lemma 3.14), as well as the definition of C, in (3.4),

by = ‘K?/g(u) — i} (4 1) = [Eaen h(w u) —h(w u+ @ r)]

<Ey, |h(wTu) — h(wTu + WTTu)|

< LyCallrull2 < 27Cp - min(LE, LY).

S]ELI’! ’wTru f/
w

Putting everything back together, under &3, &, and &;, for any ¥/, y ex:

%o, y) = xpg (¥, y)| < er+ex+es+nCa (Lf +Lf +2-min(L], L]) ).

(3.21)
It remains to bound the failure probability for each event. For event £1, we
have to bound the probability

P[&] =P {Hx €x, st i 1 H{(n;x) > L?nCA +€1} .

We first focus on one single center x € X,. Each associated H]f (1;x) =
SUP,.c B |f(w]Tx + w].Tr +¢j) — f(w]Tx +¢;)| is a random variable identi-
cally and independently distributed (where the randomness is due to the
draw of w; and ¢;). The expectation E H]f of those variables is bounded by

(we use the mean Lipschitz smoothness (3.18) with t = §;, r = w]Tr and
6= |w]—»rr|):
E Hf = Bo, Eg; sup,c \f(ijx + ijr +¢j) — f(w]«Tx + &)l 52

L” ]E |w r| = L!UCA.
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Now we describe how the sum % Z}"zl H]f (1;x) concentrates around its

mean [E H]f with Hoeffding’s inequality (note that 0 < H]f (;2) <2||f|lee <
2), and use E ij < L?UC A to get a probabilistic bound

P [% ¥ HY (%) > LinCa + el} <P

1
m;H]f(iy;x) —]EH]J.[ > €

<exp (- 751).

We take a union bound of this result over the C;(X) = |Z;| centers x € X;
to obtain

P[&] <Cy(Z)exp (—me%/Z) =exp (Hﬂ (X) — me%/2) .

Moreover, if m > 4H, (Z)el_z, then we get P [&] < e~"€1/4 An identical
development for &, yields P [&,] < e/ i > 47-[,7(2)€2_2. For &, an
union bound of Prop. 3.12 on all pairs in ¥; X X, gives

P [&] < Z(Crléz))e*meé/z < Cy(£)2e e/ = 2Hy(2)-me5/2

Moreover, if m > SHU(Z)G;Z, we get P [&] < e Mme/4, By union bound,
and provided
m > 4H,(X) - max (efz, 652,26;2) ,

the probability of failure of the deterministic bound above is lower than
P[&UEUE] <P [E]+P[&] +TP [§] = e /4 fomS/4 L pmes/4,

Finally, the desired result (less generic but more meaningful) is found by
imposing equal contributions €/4 by each error term in (3.21), i.e., € =

e =€ =¢/dandy = e/(4CA[L? + Ly +2min(L?,L§)}). O

Prop. 3.15 shows that we can control (e.g., by increasing m) the kernel
approximation error uniformly, provided we control the smoothness of the
“initial” kernel k* = F~1A (through Cp) and the mean smoothness of the
maps f and g. Improvements are possible, for example, by more carefully
setting the values of {€1, €2, €3} and 5. If X is structured (e.g., if it consists of
sparse vectors or low-rank matrices) and A is Gaussian, the value of C, in
Ey |wTr| < 5Cy forr € (£ — X) NyB4 (which controls the bounds on 4,
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d7 and J4) can be related to the Gaussian mean width of ¥ — X [CRPW12].

Example 3.16. Consider once again the case of a Gaussian kernel with unit
bandwidth (i.e., Co = 1), with a signal space £ made of bounded signals
(inside the unit Euclidean ball Bf) lying in a union of S subspaces of RY
with dimension s. In this case, according to the entropy of this signal model
(see Ex. 3.4), the kernel approximation error [« (x,y) — k¢4 (x,y)| is uni-
formly bounded over X, with high probability, provided that the num-
ber of features satisfies m > Ce 2[slog (2 (L? + Ly + me(L?,L”))) +
log S]. For instance, for bounded s-sparse s1gnals, we need m > Cs-
e 2log (4« (L? + Ly + me(L?, L}))).

We conclude this section by showing that Prop. 3.15 allows character-
izing the proximity of two approximated kernels ¢ , and k¢ , (given three
functions f, f’,g € PF) when they are related by identical expectations
Exf, = Exp o = xo. While this result could be achieved by a simple use
of the triangular inequality—from [Kf, — s o| < [Kfq — Kol + [Kp ¢ — K0
and using the same proposition to bound the last two terms—the following
corollary provides a more direct bound, possibly tighter.

Corollary 3.17 (Proximity of approximated RPF kernels). Given € > 0, a
compact set ¥, two 27t-periodic functions f, f' such that their difference f — f' €
PF, as well as a third periodic function ¢ € PF, such that there exist finite mean
smoothness constants Lﬁff’ and Lg, and A such that Cp < oo, if K(-,+) =

Kp1,g(+,+) and if the feature dimension is larger than
m>128- % - Hese(2), (3.23)
with constant ¢ = 4CA(L?7f, + Lg + 2min(L% Fofre L”)), then
Krs(xy) —Rpg(xy)[ <e Vrvyex, (3.24)

with probability exceeding 1 — 3 exp(— ”é—ff).

Proof. We simply observe that, by linearity of the kernels with respect to
their supporting functions, for any x,y € X, we can write ff,g(x,y) —
K g(x,y) = K7 (x,y) with f := f — f'. The proof then follows by ap-
plying Prop. 3.15 to the RPFs supported by f,¢ € PF, with the vanishing
kernel EX7 (x,y) = k7o(x,y) —xpo(x,y) = 0. O

In Sec. 3.6.3, we will use this corollary in combination with Prop. 3.15
to compare the performance of a machine learning algorithm (the kernel
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support vector machine, SVM) on a given classification task when learn-
ing and inference are using identical approximated kernels (i.e., when the
learning is performed using the RFF) or only kernels that are asymptoti-
cally equal (when the learning stage uses the expected kernel).

3.5 Semi-quantized random Fourier features

In this section, we explore one practical application of our general results
from Sec. 3.4 by instantiating them on the semi-quantized scenario moti-
vated in the Introduction (see Fig. 3.1). More precisely, we consider the
asymmetric RPF setting Krq(x,y) = (zf(x), zg(y)) in the particular case
where: (i) one of the signals x is available through its one-bit universal fea-
tures z;(x) € {— ﬁ, +ﬁ }" (that is, the first periodic map f is the square
wave ¢, alternating between +1 with period 27, see Fig. 3.2); (ii) the other
signal y is available through its classical (full-precision) random Fourier
features zcos(y) (that is, the second map g is a cosine).

Concretely, we start by highlighting a striking general result: when the
classical RFF (i.e., for which g(-) = exp(i-) or cos(+)) are combined with
any mean smooth function f € PF, then the asymmetric inner product
K¢ (¥, y) exactly recovers the initial kernel « that would be approached by
symmetric usual RFF K¢ ¢ (x, y). Then, to combine this fact with the binary
square wave f = g, we prove that g is mean smooth (Def. 3.13). This finally
allows us to obtain a probabilistic uniform bound on the kernel approxi-
mation error for the semi-quantized scenario pair, demonstrating in the
process how to deal with the scaling issues that appear in such schemes by
using the normalization (3.13).

Expected kernel with a single-frequency nonlinearity: Let us begin by
noting an interesting consequence of Prop. 3.8. From RPF z¢(x) captured
on x with any nonlinearity f € PF whose fundamental period is exactly
27, one can recover in expectation, for a given vector y, the evaluation the
shift-invariant kernel x(x,y) = «*(x — y) associated with the sampling of
the projections w; ~ A = Fx*.

Indeed, using Prop. 3.8 in the complex field, and setting g(-) = exp(i-)
for the RPF of y—which in this case is the RFF (Def. 3.1)—ensures that
Kfexp(i) (% ¥) = Fix(x,y). Intuitively, the dithering averages out all the
high-frequency components in f, leaving only its fundamental frequency.
When dealing with real-valued quantities x, f € IR, we can use the real
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RFF (where g(-) = Rexp(i-) = cos(-)) instead, and using the normalized
kernel (3.13) with (3.11) gives

kf,cos (xr y) = ﬁKf,cos (x/ y)

1 - T (3.25)

= 51 BU(Q x+8),cos(Q y +¢)) = x(x,y),
since (f,8) = Lk FkGi = RF;. We thus recover, through «¢ ., the initial
kernel «, thanks to a rescaling by 1/(f,g) = 1/R{F; } which must be taken
into account for a fair comparison.

Remark 3.18. In theory, we can thus recover, from z f(x), the kernel x at
many different scales by “probing” it with z (.)(y) for any scale k such
that F, # 0. However, we observe in practice that the kernel approx-
imation error quickly increases with k. This can be understood in the
light of Prop. 3.15, since one easily show that Lgos.) = [k| and® 21kl <
Lgos(k»
factor (R{F})~! grows as k increases; for instance, (R{F.})~' o |k| for
f=a

The asymmetric scheme in (3.25) is interesting because it allows the
same level of control over the approximated kernel as the usual RFF (which
is an improvement compared to the scale mixture of RFF kernels imposed
by Prop. 3.7) while still enjoying the freedom to use any type of features
z¢(x) for one of the signals being compared—a particularly appealing choice
being f = g, the one-bit universal quantization. However, in order to use
Prop. 3.15 to obtain uniform error bounds, we still need to prove the mean
Lipschitz smoothness of this (discontinuous) map.

) < |k|. Moreover, if ||f||> = Y |F¢|? is bounded, each rescaling

Mean Lipschitz smoothness of universal quantization: We now show
that the one-bit universal quantization function g (i.e., the square wave) has
the mean Lipschitz property—although it is discontinuous. The same strat-
egy could be used to prove the mean Lipschitz smoothness of any function
in PF with a finite number of discontinuities per period (as done, for exam-
ple, with the modulo map in Section 3.7).

Proposition 3.19. The one-bit universal quantization function q, defined in (3.8),

SFirst, Lzos(k-) < Lpr(ik-) = |k| since |cos(a) — cos(B)| < |e* — €| for all «, B € R. Second,
from |cos(k(t + 7)) — cos(kt)| = 2|sin(k(t + })) sin & | for all t, € IR, we get, by fixingr = 0

in (3.18), L;’ > sup;. %\sin%ﬂEtNu([O,z”D [sin(k(t 4+ %))\ = %\k\
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has the mean Lipschitz smoothness property (Def. 3.13) with constant
Ly = %lllle = %. (3.26)

Proof. By definition of the mean smoothness property, we must find Lg
such that

2 J T maxse g {la(t+7) —q(H)|}dt < L] -6

We start by characterizing the integrand I;(f) := max, <s{|q(t +7) —q(t)[}.
Since g(t) is constant (in particular, g(t) = =£||g||c) everywhere except on
discontinuities at t € 7 + 71.Z where its height changes by an absolute step
of 2||q||c, we have for k € Z that (see Fig. 3.2)

L Ziknt+d<t<Z+(k+1)m—6
’ gl FAkm—5<t< T +km+o.

Integrating this over one period gives fozn I5(t)dt = min(49,27) - 2||q[ee <
8l1qlleo - 8, ie., Lj = Z1qlleo. D

Combining quantized and cosine features: We are interested in approx-
imating a specific kernel x(x, y) by the asymmetric features product, i.e.,
(z4(x), zcos (y)). This product gives on average x;,cos = %K (recall from (3.8)
that Q = % (—1)*=1/2 for k odd and 0 otherwise), and the re-scaled ap-
proximation ¥, cos defined in (3.13) in this case is given by

%q,COS(xry) = % 'fq,COS(xr]/) = %(Zq(x)rzcosw)) ~ k(% y). (3.27)

We bound the error of approximating the kernel over an infinite compact
set X thanks to Prop. 3.15.

Corollary 3.20 (Uniform kernel approximation error from quantized-com-
plex asymmetric features). Given € > 0, a compact set %, and the frequency
distribution A such that Cp < oo, provided that

m > 3271'2 . e% . He/((8+67t)CA) (Z), (328)
the following kernel approximation bound holds uniformly:

[Kgcos(x,y) —k(x,y)| <€, Vxyck, (3.29)
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with probability exceeding 1 — 3 exp(— %)

Proof. Apply Prop. 3.15 with f = g, g = cos, using that Lg = % (from
Prop. 3.19) and Ll = 1: for any given €’ > 0, if m > 128 5172 “Herye(X)
with ¢ = (124 18)C,,

P[3x,y€X : [Rgeos(¥y) — 2x(x,y)| > €'] <3exp (_m&/z> '

To take into account the scaling of the kernel, set € = %e—él = Zé. O

Example 3.21. Consider a final time our example of a union of S s-dimensional
subspaces (see Ex. 3.4) combined with the Gaussian kernel with unit band-
width (and Cy = 1). In this case, the kernel approximation error, given by
|%g,cos(x, ) — k(x,y)|, is uniformly bounded over X, with high probabil-
ity, provided that the number of features satisfies m > Ce~2(slog(3£8%) +

(8+67)ed
s€

log S), which reduces to m > Ce2slog(
signals.

) for bounded s-sparse

Corollary 3.20 provides a theoretical guarantee for the semi-quantized
scheme presented in the Introduction. In the next section, we further vali-
date this approach from numerical simulations.

3.6 Experiments

In all our experiments, we are interested in approximating a kernel x(x,y),
associated with the RFF sampled with A™, by the inner product of ran-
dom periodic features. We focus on (combinations of) the two types of
features discussed in the previous section: the “real” random Fourier fea-

tures zeos(x) = ﬁ cos(Q' x+ &) € R™, and the universal features z4(x) =

ﬁq((ﬂx +¢) € {—ﬁ, +ﬁ}m, where m is the number of features (or

dimension), and where we generate (3 ~ A™ and & ~ U™([0,27)). Recall-
ing the rescaling (3.13) for fair comparisons of the approximated kernels
with «, we thus consider three possible combinations: the classical (real)
random Fourier features (with || f||2 = | cos()||? = 1),

%COS,COS(x/ ]/) = 2<zcos (x)/ Zcos (y)) ~ K(x/ y>/

our asymmetric “semi-quantized” scheme (with (f,¢) = 2/m),

%q,cos(xr y) = %(zq(x),zcos(y» ~ K(x' y)/
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and the fully quantized inner product from [BR13] (with ||¢||?> = ¥ |Qk/* =
1),

”Eq,q(x/y) = <zq(x),zq(y)> ~ Kq,q(xry) =Ykez |Qk|2K(kx/ky) # k(% y).

3.6.1 Qualitative analysis of the expected kernel

As a first experiment, we visually demonstrate that our asymmetric prod-
uct K, cos indeed approaches a target kernel x. As target, we use the Gaus-

2
sian kernel x(x,y) = exp(— H"ZUZ\\z ) (for which A is the Gaussian distribu-

tion NV(0,0721,)), as well as the Laplace kernel x(x,y) = exp(—@)
(where A is the Cauchy distribution (C.9)), both in dimension d = 5.

We evaluate the three inner products Kcos,cos, Kg,cos and kg, on n = 2000
pairs of vectors {(x;,y;) }/_;, that are generated as follows. We first sample
x; € R according to a standard normal distribution, then pick y; = x; +
Aju;, where u; is a randomly chosen unit vector (i.e., normalized such that
l|lujl|, = 1 with p = 2 for the Gaussian kernel and p = 1 for the Laplace

one), and A; = (la)f/\l’;ax is a controlled distance which is incremented for

each pair, linearly increasing from 0 to Amax = 5. This ensures that we
test the kernel approximations uniformly in the desired range of distances
I = yll,.

We then generate one realization of Q, { (with m = 200 for the Gaussian
kernel, and m = 2000 for the Laplace kernel, values which were arbitrar-
ily chosen to get pleasing visualizations), which we use to compute the
real RFF { (zcos (%;), Zcos (¥;)) }?:1 as well as the universal quantization fea-
tures { (z4(x:),24(y;)) };_,, from which we get n evaluations of the classi-
cal REF inner product Kcos,cos (Xi, ¥;) = 2(Zcos (i), Zcos (¥;)), the asymmetric
product Kg.cos (Xi, ¥;) = 5 (24(Xi), Zcos(y;)), and the fully quantized product
Kaq(xi,y;) = (zq(xi), 29 (y;))-

Those evaluations are shown as black dots in Fig. 3.3 for the Gaussian
and Laplace kernels in the top and bottom rows, respectively. As pre-
dicted by the theory, both the RFF product ¥cos,cos and our semi-quantized
product &, cos concentrate around the target kernel x (in red). As expected
from [BRM17], in the fully quantized case the product x,,, rather concen-
trates around a different “distorted” kernel, x,,. Note that we increased
the feature space dimension m tenfold for the Cauchy kernel, which re-
duced the variance of the approximation. However, it is difficult to notice
a substantial difference of approximation quality between the plain RFF
Kcos,cos and the semi-quantized asymmetric scheme «;c0s. We thus per-
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Fig. 3.3 Comparison between the target kernel x(x, y) (red curves), and
the approximations (the black scatter plots each evaluated over n = 200
pairs {(x;,y;)} ;) using, for (a,d), the plain random Fourier features
Keos,cos(Xir Y;) = 2(Zcos(Xi), zcos(y;)), for (be), our asymmetric cosine-
quantized pair Kg,cos (i, ¥;) = 5 (24(%i), Zcos(y;)), and for (c,f), only quan-
tized features ;4 (x;, y;) = (24(xi), 24(y;)). In the last case, the “distorted”
expected kernel E «; ; = x,,4 is shown in blue. For (a-c; top row), the com-
parison is made for the target Gaussian kernel «(x,y) = exp(—%)
with scale ¢ = 1.5, and the approximated kernels use m = 200 random
features evaluated. For (d-f; bottom row), the target kernel is the Laplace
kernel k(x,y) = exp(fM) with scale T = 1.5, and its different approx-
imations are set with m = 2000.

form a more quantitative exploration of the error |K;cos — x| in the next
experiment.

3.6.2 Quantitative analysis of the approximation error

To perform a more quantitative analysis of the kernel approximation from
Cor. 3.20, we perform another set of experiments that highlight the evolu-
tion of the worst-case error (associated with the hybrid estimation (3.27)),

€g,c0s(X) 1= SUPy yex |Kg,cos (%, y) — (2, )],

as a function of m. In this synthetic experiment, we work with a finite set of
signals £ = {x; € le}?:l obtained from a Gaussian distribution x; ~;; 4.
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N(0,6%1;) in with & = 10. We target a Gaussian kernel x of bandwidth
o = 0.25, and evaluate the absolute approximation error €;,cos(X) over all
vector pairs of X.. We record the largest error encountered this way, and
repeat this process for several feature dimensions m.

First, we let n = |X|, the number of signals, vary between 10 and 500
(by sampling 21 equally-spaced values for log,,(7)), and generate a new
dataset in dimension d = 32 each time. For each value of m (varying uni-
formly between 100 and 1300), we repeat 50 independent draws of (2 and
¢ and report Fig. 3.4a the number of times that €;,c0s(X) < € for a fixed
threshold é = 0.15 (i.e., we report the empirical “success rate” of the em-
bedding). As expected, the feature space dimension m needed to succeed
(highlighted in red for 50% success rate) scales as O(log ). We also show
in dashed yellow the same transition for the worst-case error €cos cos (%)
(evaluating |Kcoscos — k| over all vector pairs of ¥) committed by the plain
RFF, which shows the price to pay for quantization. Roughly speaking, the
same success rate is achieved for Ky cos (X, xj) as for Keos cos (X, x]-) provided
we take ~ 33% more random features, which still corresponds to a bitrate
reduction for the features of the fist signal x;. Finally, for the sake of com-
parison we also show in blue the same success rate but when measuring
the proximity error between the two approximations (semi-quantized and
usual RFF), i.e., [K5,cos — Kcos,cos|, which relates to our bound in Cor. 3.17.

Second, we fix one single dataset ¥ of n = 200 signals in R®, but record
the precise value of the worst-case error € := €;,0s(X) for each of the 50
draw of ), ¢ at different values of m (this time varying along a logarithmic
scale). We display the various errors € obtained as box-plots in Fig. 3.4b.
As can be seen by comparison with the —1/2 slope in red, the error is con-
trolled with high probability (discarding the outliers from the box-plots)
provided that m = O(e~?2), as expected from Prop. 3.15.

3.6.3 Application: semi-quantized support vector machines

As a last experiment, we demonstrate how the asymmetric features can be
used in practice, for the particular case of Support Vector Machine classifi-
cation [BGV92,SSB™02] (see Subsection 2.1.1), where the goal is to assign
a class label ¥ € Z to new query vectors ¥’ € X from labeled training
data 7 := {(x;,¥;)}/" ;. In the binary classification case (labels y; € {£1}),
given a kernel «¥ : & x & — R, the learned SVM classifier # predicts the
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Fig. 3.4 (a) Empirical success rate (from 100% success in white to 0% in
black) of the kernel approximation (defining success as €;.c0s(X) < € =
0.15), as a function of m (log scale) for varying dataset size n = |L|. The
transition to 50% success or more is highlighted in solid red; the same
curve is shown for the success rate of the classical RFF (when €¢os cos(X) <
€) in dashed yellow. The blue line represents the success rate related
to the proximity between those two kernel approximations, i.e., when
SUpP, ey |%g,c08 (%, ) — Keos,cos (¥, )| < €. (b) Largest kernel approximation
error € := €4,.c0s(X) as a function of m for 50 draws of Q) and ¢ (the blue
box-plots). The dashed red line shows the slope log;,(€) ~ —% log,(m),
for reference.
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class of an incoming vector x’ as
0(x') = sign (Zies* wiy kP (), xp) + b), (3.30)

where §* C [n] is the index set of support vectors x;, 0 < w; < R are
the related weights, and b is a bias (or “intercept”) term. The quantities
{S*,a;, b} are the parameters to be learned during the training stage, while
the kernel x* and regularization strength R > 0 (where a smaller R corre-
sponds to more regularization) are hyper-parameters to be set beforehand.
In the multi-class case (where y; € [N] for N classes), we use the “one-
versus-rest!” strategy where one binary classifier is trained to recognize
each class.

In this experiment, given a simple classification task described below,
we propose to train the SVM with a given kernel K%,
cation of new samples with another kernel K% that approximates K{, hence
assessing how the classifier 6 is impacted by this modification. We con-

sider two options. In the first we train a kernel SVM on the raw data 7

and to test the classifi-

with a “true” kernel K{ = x and use the approximated kernels provided by
random periodic features (setting KPF to the kernels Keos,cos, Kg,cos and Kq 4
defined from (3.13)) only at the inference stage. In this mode, which is the
viewpoint we adopted in most of this work (e.g., in Prop. 3.15), we thus
interpret the RPF inner products as a means to approximate as well as pos-
sible the given kernel .

In a second case, we directly train a linear SVM on the cosine ran-
dom Fourier features of the training set 7' := {(zcos(%;),y:i) }!-,, which
amounts to using K% = Kcos,cos in (3.30) as the reference kernel during
training. At the testing stage, we still set KﬁT t0 Keos,coss Kg,cos and Kg 4. In
this scenario, the random periodic features are rather (implicitly) used to
define a specific kernel Kcoscos that generalizes as well as possible with-
out caring about the approximation Kcoscos = k; this view is more faith-
ful to recent research on the generalization capabilities of learning from
RFF [ZMDR18, YLM 12, RR17, GLK"20]. Our other RPF products used
at the test (k5,05 and %, 4) are then to be understood as approximations to
K% = Kcos,cos Tather than to the original x, as explained in Cor. 3.17, and as
measured by the blue curve in Fig. 3.4a.

4also known as “one-versus-all”.
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Table 3.1 Scenarios and color coding for Fig. 3.5.

Color RPF for Kernel at the test: K?r(x’ LX)
Query x" | SVs {x;}ics
black Zcos (x/) Zcos(xi) Keos cos(x/ ) = 2<Zcos (x ) zcos(xz)> ~ K(xlrxz)
green zq(x') Zcos (%7) Ky, Cos(x’ X)) = 5 (24(x), zcos (%)) = x(x, x;)
blue Zeos (x') zq(%;) Keos,q (¥, %) = 5 (zq(x), zcos(x,)) ~ k(x, x;)
red zg(x') zg(xi) Kaq (&', 1) = (zq(x'), Zcos (%))

Synthetic data

Specifically, for both contexts, we generate a synthetic dataset of 10000
samples in IR? by generating a mixture of 4 Gaussians for each of the N = 5
different classes, separated into n = 8000 training and 2000 testing sam-
ples (see Fig. 3.5, left). Regarding the true kernel, we set it to a Gaussian

kernel k(x,x') = x*(x — x') = exp(— Il HZ) with bandwidth ¢ = 2,
and fixed the regularization R either to 5 0 (mild regularization) or 0.25
(strong regularization). For various feature space dimensions m, we gen-
erate the projections Q ~ A™ (with A = Fx*, see Sec. 3.2) and dithering
& ~U™([0,27)), and thus train (with Scikit-learn [PVG ™ 11]) both an SVM
classifier from the raw data with the Gaussian kernel, and another linear
SVM from the associated cosine random Fourier features. We then evalu-
ate these classifiers (in “inference mode”) on the separate test set, using the
different random features inner products and report the median accuracy
(out of 25 draws) as a function of m in Fig. 3.5, right. In the four plots of
this figure, we use a specific color coding of the RPF for both the incoming
query vector x’ and the learned support vectors (SVs) {x;};cs+, as summa-
rized in Table 3.1 for convenience. Note that, according to this table, the
green and the blue curves are associated with the scenarios represented in
the Introduction in Fig. 3.1a and Fig. 3.1b, respectively, and the red curves

relate to the (symmetric) quantized approach of [BJKS15].

When approximating the “exact” SVM classifier (where K{ = k; top row

in Fig. 3.5), a substantial number of features is required to reach the same
performance (m ~ 300 to obtain accuracy > 97.5%). As could be intu-
itively expected, the drop of accuracy is larger when more quantization of
the features is being performed (the price to pay is particularly high when
the support vectors are quantized, in blue and red). This difference is prob-
ably related to the fact that the SVM decision function is relatively sensitive
to the position of the support vectors (in the feature space), because they
directly lie on the decision boundary. Notice also the importance of regu-
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Fig. 3.5 Left: Considered dataset (each arbitrary color corresponds to one
of the 5 classes). Right: Test accuracy of an SVM classifier learned with a
Gaussian kernel on the raw training set 7 (top (a-b)) or on their cosine RFF
(bottom (c-d)), for regularization parameters R = 5 (weak regularization;
left (a-c)) and R = 0.25 (strong regularization; right (b-d)), and evaluated
with several RPF combinations as a function of their dimension m. Classi-
fication performance is measured on the test set according to the scenarios
and curve colors described in Table 3.1. The curves are the median out
of 25 independent draws of () and ¢. The dashed line indicates the test
accuracy of the exact SVM classifier (no random features are used).

larization: although changing R does not incur a noticeable change on the
exact SVM accuracy (the horizontal dashed lines), it appears in Fig. 3.5b
that stronger regularization improves the RPF-based classifiers.

When the SVM is directly trained on the random Fourier features (i.e.,
K% = Rcos,cos; bottom row in Fig. 3.5) the accuracy of Rcos,cos (X', x;) (black) is
strongly boosted (reaching 97.5% accuracy or higher with less than m = 50
features). The role of regularization is here exacerbated: reducing R hurts
the performance of the plain RFF classifier, but is necessary to maintain
good accuracy with the semi-quantized schemes for a reasonable feature
dimension m. It appears that proper regularization is needed to account
for the quantization noise.

Finally, note that in all cases, the fully quantized scheme (in red) is not
much worse than our semi-quantized solution with dataset quantization
(the kernel mismatch shown Fig. 3.3 is apparently not too harmful in this
case), but still suffers from strictly more classification errors. Therefore, it
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can be replaced by one of the asymmetric schemes for a negligible cost,
it should be done. However, because we focus on approximating an im-
posed kernel without considerations for the underlying machine learning
model, we did not compare to the fully-quantized case where the quan-
tized features are already used during the training [BJKS15], i.e., where the
distorted kernel x,;,, = [k, is directly embraced to train the SVM rather
than being used as an approximation for «.

Real data: remote classification of hyperspectral pixels

In a last experiment, to prove the concept of using semi-quantized fea-
tures in a concrete and practical setting, we consider the problem of hyper-
spectral pixel classification, i.e., determine the class of a spatial pixel given
its electromagnetic spectral response across d wavelengths. Kernel SVMs
have been a quite popular solution to this challenge: our approach in par-
ticular is inspired by [GCCJ99, MB04] as well as [H5515] for the use of RFF,
but many more references can be found in the extensive review [MIO11].

To have a concrete and quantifiable measure of the computational gains
allowed by the quantization of RFF, we focus on the quantized query con-
text (illustrated Fig. 3.1a). More precisely, we consider the scenario of an
aircraft (or satellite) equipped with a hyperspectral sensor that must send
its readings x’ for remote classification of the pixels it observes. We as-
sume this task is entrusted to a kernel SVM, involving a weighted sum of
KjT(x’ ,x;) terms. Since the communication link between the satellite and
the remote server is presumably costly, it is important that the number of
bits used to encode this query, noted b, is as small as possible.

We compare three strategies. First, the baseline strategy is to send the
“raw” measurements ¥’ € R, which requires b = Bd bits, where B des-
ignates the bit-depth of full-precision readings (we consider B = 64 bits
in our experiments). In this strategy, the kernel in the learning and test-
ing stages is the “true” Gaussian kernel, i.e., KE = KﬂT = k. Second, the
usual RFF strategy is to send the full-precision RFF zqs(x’) € R™, which
requires b = Bm bits. Following the observations from the previous exper-
iments, we both learn and test on the RFF kernel, i.e., K% = KﬁT = Kcos,cos-
Finally, the quantized RFF query strategy is to send the quantized RFF
zg(x') € {— ﬁ, + ﬁ 1™, which takes up b = m bits®. Although the kernel

SStrictly speaking, we would actually need to transmit § (v/mz,(x') +1) € {0,1}" and to
remotely recover z,;(x') from this binary stream, assuming m is known to the receiver.
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at test time is now the hybrid product K% = Kg,cos, we still learn using the

usual RFF kernel K{ = Kcos,cos- Note that to simplify the comparison, we
thus consider only a naive encoding of the query, neglecting the use of e.g.,
entropy coding strategies.

We use the standard Indian Pines dataset [BBL15], a hyperspectral vol-
ume which contains 10 249 labeled pixelsﬁ, measured across d = 200 wave-
lengths’, separated into N = 16 classes (see Fig. 3.6a). We first separated
20% of those pixels into testing set, which left n = 8204 pixels for training.
In order to select the hyper-parameters (kernel bandwidth ¢ and regular-
ization strength R), following their sensitivity observed in the previous ex-
periment, we performed a separate cross-validation (with 5 folds from the
training set) for each of the three individual strategies. We then evaluated
the test set accuracy reached by each strategy, while letting m vary for the
two RFF-based strategies, and report the results Fig. 3.6b. In this figure,
the baseline strategy is represented by the red dot, and the usual (resp.
quantized) RFF strategies are represented by the black (resp. green) solid
curves, which are obtained by varying m.

The baseline (red) achieves the best accuracy overall, but at the price
of a quite substantial bandwidth usage. When using full-precision ran-
dom features (black), the accuracy is only slightly reduced, but only if a
relatively large number of random features m is used, which does bring
substantial bitrate reduction. Indeed, to reduce the bandwidth b by, say,
an order of magnitude, the full-precision RFF strategy must sacrifice more
than 10% accuracy, which is probably not acceptable in practice. On the
other hand, with the quantized query RFF strategy, we are able to achieve
this same bitrate reduction by an order of magnitude at the cost of only
about 4%, which sounds more reasonable. Overall, (keeping in mind that
more involved compression methods could be applied to transmit the raw
measurement x’ in our scenario above, and hence still apply the first classi-
fication strategy after decompression) the quantized RFF strategy performs
better whenever the bitrate b is significantly smaller than the baseline bi-
trate, hence showing the potential of the approach.

6The size of the full volume is 145 x 145 which gives 21025 pixels in total, but many of
them are unlabeled, which we discard for this experiment.

"The initial volume contains 220 wavelengths, but following the workflow commonly
adopted with this dataset, we removed the water absorption bands (i.e., the spectral indices
[104-108], [150-163], and 220 from the initial dataset).
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(a) Indian Pines dataset. (b) Test accuracy w.r.t. bit-rate b.

Fig. 3.6 (a) Schematic representation of the Indian Pines hyperspectral
volume, containing 10249 labeled pixels x; € R?, which feature d = 200
wavelengths. (b) Test accuracy as a function of the number of bits b to be
transmitted to the remote server, for each of the three considered strategies:
the baseline strategy (red dot) sends the raw test vector x’; the RFF strategy
(solid black) sends the full-precision RFF zos(x) of varying size m; and the
quantized RFF strategy (solid green) sends the one-bit equivalent z,(x’).
The curves are the median out of 30 independent draws of () and ¢.

3.7 Asymmetric RPF beyond one-bit quantization*

So far, we applied the asymmetric RPF strategy on only one pair of periodic
maps, namely f = g and g = cos (see Section 3.5). In this section, to vali-
date the generality of our results, we further investigate other maps, gener-
alizing the (g,cos) scenario with respect to two aspects. First, we consider
a different discontinuous periodicity, namely the modulo map f = mod,
for which we show the mean Lipschitz smoothness. This defines "modulo
random Fourier features". Moreover, we investigate the complex extension
of those two maps (f = g and f = mod), and demonstrate empirically on
a short experiment how the performance of those different schemes com-
pare.

3.7.1 Modulo random Fourier features

The modulo periodic map, denoted by mod(-), is a linearly increasing
function with "wraps around" when some threshold is reached. More pre-
cisely, we consider the normalized modulo operation mod € PF, defined by

mod(t) := moda,(t) with modr(t) :==2(&—|+]) -1, (3.31)
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Fig. 3.7 The normalized periodic map mod(t) defined in (3.31) (black,
plain), and the associated integrand I5(t) (where we fixed § = 0.5), as de-
veloped in the proof of Prop. 3.22 (green, dashed).

the "normalized" modulo T operation. This map, also known as the "saw-
tooth wave", is illustrated Fig. 3.7.

For now, the main purpose of this map is to check that our generic
results apply to other (discontinuous) maps besides the one-bit universal
quantization q. However, as will be further explored in the next chap-
ter, there is a more pragmatic interest: motivated by the recent theory of
modulo sampling [BKR17] and its extension to compressive modulo sam-
pling [SH19], we could imagine efficient hardware implementation of the
modulo random Fourier features map

Zmod (¥) :=mod(QTx + & — %), (3.32)

where the purpose of the 5 phase shift is to "synchronize" f = mod with
the map g = cos (otherwise, we would have some form of "destructive
interference")®. As explained in [BKR17,SH19], the hardware implementa-
tion of (3.32) is based on self-reset ADCs [R]03].

To apply our theoretical results to the modulo map, we need to prove
its mean Lipschitz smoothness.

Proposition 3.22. The modulo function mod, defined in (3.31), has the mean
Lipschitz smoothness property (Def. 3.13) with constant

Lt 3, (3.33)

mod = T

8 Alternatively, we could have set ¢ = — sin.
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Proof. By definition, we seek a constant LI}; og such that for all & € (0, 7],
= foh max,c(_g,6){/mod(t +r) —mod(t)|} dt < Lg - 6.

We first characterize [;(t) := max<s{|mod(t + r) — mod(t)[}. Since
mod(#) is linearly increasing (with slope 1) everywhere except on discon-
tinuities at t € 27tZ, we can show that (see Fig. 3.7)

() {Z—ti”k when |t — 27tk| < J for some k € Z,
S(H) =

% elsewhere.
Integrating this over one period (summing the area) gives

[ s(Hdt = 2n —26)- £ +26- L2+ (2 L)),

2

which gives the bound Lf’n od S % = % Moreover, taking lim;_,y, we can

show that his bound is tight (i.e., Lfn od = % and there is no smaller constant
such that mean smoothness is verified). O

We could thus say that the sawtooth wave is somehow "smoother" (ac-
cording to mean Lipschitz smoothness) than the square wave, which is
maybe what one would intuitively expect since the sawtooth wave exhibits
less discontinuities (which should heavily penalize the "smoothness").

Recalling from Prop. 3.15 that a lower mean Lipschitz smoothness con-
stant allows to decrease the feature dimension m (to achieve a given error),
one might wonder if this argument makes the modulo feature map mod ()
"more accurate" than the universal quantization g(¢) when approximating
a kernel through the asymmetric RPF scheme.

However, the mean smoothness constant is only half of the story. As
explained in Section 3.5, to approximate a given kernel «(x,y), the asym-
metric RPF product (zf(x), zcos(y)) must further be re-scaled by R{F; } the
first FS coefficient of f, the resulting kernel approximation being

7c'f,c05(x,]/) = 5RLF1<Zf(x)'ZCOS(y)>.

The "quality” of a periodic function f in this scheme is thus determined by
two quantities: its mean smoothness (a lower smoothness constant is bet-
ter) and its first Fourier series coefficient (here, a larger real part of the first
FS coefficient is better). More precisely, for a fixed target error € and a prob-
ability of failure §, our results imply that, in order to achieve |’1€f,cos (x,y) —
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k(x,y)| < € uniformly over ¥ with probability at least 1 — §, one must have
a feature dimension of at least

m > 64- W - max (2He/c’ (Z)rlog (%) )’

with, a (conservative) constant’ of ¢’ = 4CA |RE; |71+ (£ + L f)‘

Coming back to the comparison of f = g with f = mod for example,
in the first case we have c’q = 10C,, while in the latter!? we have . od =
18C,; in other words, the radius in the covering number is smaller for
the modulo features. This estimate implies that (according to our theory)
the modulo feature map should require more random features to reach a
given approximation error, although it is a "smoother" periodic map; this

is indeed what we will observe later in this section (Fig. 3.8).

3.7.2 Complex extensions

As mentioned at the beginning of Section 3.5, it is also possible to recover
the "original" kernel x when g(t) = ¢'*. In this setting, to be closer in spirit
to the "complex" version of the random Fourier features, we can moreover
take complex-valued RPF, by complex extension of the real-valued ones. In-
tuitively, the idea of the complex extension is to generalize the relationship
between cos(t) and exp(it). To be specific, if f : R — R is a real-valued
periodic map, we define its complex extension fc : R — C as

fe(t) := f() +if (£ = 7). (3.34)

In this case, the asymmetric RPF estimation strategy is, using that the first
FS of fc is Fc1 = 2F; (see Lemma A.2),

= 1 ~

Kfc,exp(i‘)(x' y) = ﬁ(zfc (x), zexp(i-)(y)> ~  xk(xy).
Intuitively, the advantage of this complex extension is that, for a given di-
mension m (thus, for a given amount of random projections in (), we ob-
tain more "information" (in the form of real and imaginary components).
This potentially allows to decrease the kernel estimation error without in-
creasing the amount of random projections to perform.

To formalize this idea, we would like to obtain bounds on approxima-

9Comparecl to the bound L. < 1 used above, here we rely on the tighter value L = %
10Recall that we phase-shift f = mod by Z to synchronize with g = cos. We use that in this
case, its first FS coefficient is |R{F; }| = 1; see Appendix A.

T
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Fig. 3.8 Success rate (average number of times €(X) < &, out of 100 in-
dependent draws of Q) and ¢), as a function of the amount of real coeffi-
cients m’, for several random periodic features combinations: either usual
symmetric RFF (blue), semi-quantized (green) or semi-modulo (red). Each
combination uses real-valued features (plain) or complex-valued features
(dashed).

tion error through Prop. 3.15. For this, we could for example use L?C <

2L%. However, since the involved quantities are not necessarily tight in
general (the bounds are not necessarily achieved), in this work we content
ourselves with a simple numerical simulation instead.

3.7.3 A small experiment

To compare the different asymmetric RPF schemes, we perform a small
version of the experiment from Subsection 3.6.2: for varying embedding
dimensions m, we compute the kernel approximation error on all pairs in
a finite set X (generated by picking n = 100 samples from two Gaussian
modes in dimension d = 32) through the asymmetric RPF schemes de-
scribed above!! and report whether or not all the estimations had error
smaller than some fixed threshold & = 0.1. This is repeated for several in-
dependent trials, and we compute the average number of "successes" (i.c.,
cases where the kernel estimation error €f,(X) = SUp, ey K5 e (x,y) —
k(x,y)| is smaller than €).

NThat is, for the pairs (f, g) given by (cos, cos), (exp(it),exp(it)), (g,cos), (qc,exp(it)),
(mod, cos) and (modc, exp(it)), with phase synchronization in the case of (mod, cos). For
the pair (exp(it), exp(it)) we do not use dithering since it is not required.
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To facilitate the comparison between the real and complex-valued maps,
we report the success rate as a function of the amount of "real coefficients"
to be stored (i.e., m" = m for f(t) € R and m’ = 2m for fc(t) € C). The
results are shown Fig. 3.8.

First, we can observe that the real-valued and complex-valued features
perform similarly at equal number of real coefficients m’. That is, by us-
ing the complex extension, we can achieve the same kernel approximation
error while reducing by two the amount of random projections m to per-
form (in Chapter 4, we'll thus focus on the complex-valued RPF). Second,
as anticipated above from our theory, the modulo RFF show a worse per-
formance in approximating the kernel.

3.8 Conclusion

This chapter introduced the framework of asymmetric random periodic fea-
tures, where random projections are passed through two different periodic
maps, and whose inner products are used to approximate a kernel. We
provided an expression of this kernel, with a uniform error bound holding
on infinite compact signal sets, provided the periodic maps satisfy a prop-
erty we called the mean smoothness. The mean smoothness holds for some
discontinuous maps such as the one-bit universal quantization (a square
wave). We studied (theoretically and empirically) semi-quantized kernel
approximations, and showed how the impact of quantization can be con-
trolled. As a side note, with those developments we also generalized the
local geometry-preserving embeddings from [BRM17], and corrected an
error in their main result in the process (this is the content of Appendix C).

As highlighted by the applied experiments in Sec. 3.6, these theoretical
guarantees do not necessarily ensure an accurate control over the general-
ization performance in a machine learning context. Indeed, it seems crucial
to incorporate the random periodic features directly into the training stage,
and to anticipate that some features might be quantized later (for example,
when picking the regularization strength).

In the two applicative scenarii we proposed in the Introduction (Fig. 3.1),
the ultimate objective is to improve the bitrate-kernel accuracy trade-off.
Allowing a finer (but still coarse) quantization of the RFF (i.e., coding each
entry on b > 1 bits instead of 1 as we proposed, for example with the b-
bit universal quantization [BRM17]) is a promising idea to reach a better
trade-off. Since the mean smoothness of these finer quantization functions
can also be verified, our results would carry over easily to this multi-bit
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quantization of the RFF.

Further perspectives are discussed at the end of this thesis, in Chapter 7.
In the next chapter, we rely on the main results from this one to obtain
formal guarantees in the context of a compressive learning which relies
on asymmetric periodic functions, e.g., the (complex extended) universal
quantizer and the complex exponential.
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framework, called asymmetric compressive learning, which allows us
(among others) to incorporate harsh quantization of the sketch contribu-
tions, (almost) without sacrificing learning performance.

IN this chapter we study a generalization of the compressive learning

Usual "symmetric" compressive learning (CL) breaks training down
into two steps: a sketching phase, that summarizes the dataset to a lightweight
sketch vector, constructed by passing the data through a well-chosen fea-
ture map ®, and averaging those contributions; and a learning phase, which
extract the desired model parameters by solving an optimization problem,
that also involves the feature map @ (see Section 2.5). We call this setting
"symmetric" because both phases use the same feature map .

However, the sketching and learning phase intuitively "desire" differ-
ent properties from this map. For example, the sketching phase might ben-
efit from quantization of the features (which we succinctly call quantized
sketching), while the gradient-based algorithms of the learning phase re-
quire differentiability of this map. Motivated by this observation, the gen-
eral asymmetric compressive learning framework proposed in this chapter is a
relaxation where the feature map is allowed to be different for each phase (i.e.,
Y during sketching and ® during learning, with ¥ # ®).
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The main achievement of this chapter is to extend the theoretical sta-
tistical learning guarantees of (symmetric) CL from [GBKT17] to this new
asymmetric setting. Extensive numerical experiments are provided as well
to validate this approach. As a particular case, we obtain learning guaran-
tees for the quantized sketch contributions by building on the asymmetric
random periodic features guarantees from Chapter 3. In fact, the asymmet-
ric CL scheme from this chapter can be seen as the "averaged equivalent"
of the asymmetric RPF scheme from the that chapter, as we use the same
basic principles to embed probability distributions instead of individual
data vectors.

This chapter is almost entirely based on a couple of publications. We
proposed a first short description of the asymmetric CL scheme in "Quan-
tized Compressive K-Means" [S]18b] (Signal Processing Letters, 2018), in
which we focused on the k-means problem, and mainly backed our ap-
proach by numerical experiments. The in-depth formal theoretical guaran-
tees (as well as the GMM experiments) are from "Asymmetric compressive
learning guarantees with applications to quantized sketches" [S]21], which
is currently under review in IEEE Transaction on Signal Processing. A few
extra experiments were added, indicated by a star *.

4.1 Introduction

4.1.1 Motivation

Context: symmetric compressive learning In order to highlight the speci-
ficity of asymmetric compressive learning, let us here briefly recall the ba-
sic principles of (symmetric) compressive learning. CL was proposed to
learn from datasets X = {x; € IRd}?:1 of massive scale (in particular, with
a large number of examples n, typically at least several millions) while
keeping computational resources (i.e., memory, training time) under con-
trol [GBKT17, GCK"20]. To do so, CL first compresses the data as a sin-
gle m-dimensional (possibly complex-valued) vector zg y = % Yo, @(xi),
called sketch, by simple averaging of a feature map ® : R — C".
Importantly, the choice of the feature map ® determines the range of
machine learning tasks that one is able to solve from the sketch zg, 1. For
example, it is possible to solve k-means [KTTG17] or Gaussian mixture
modeling [KBGP18] within this framework, when & is chosen to be ran-

1Note that ® should be nonlinear, otherwise the sketch cannot capture anything beside the
data mean.
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dom Fourier features (RFF) [RR08] (see Subsection 2.1.4). As a reminder,
those features are defined as the complex exponential of random projec-
tions of the data, i.e.,

Dper(x) := ﬁexp(i(ﬂ—rx+§)), 4.1)

where the exponential is applied component-wise, and Q € R?*" has ran-
domly drawn columns w; ~j; 4. A for some probability distribution A.The
random dither ¢, which has uniform entries ¢; ~j;q. U([0,27)), will be
useful when we consider quantization (as could be guessed from our de-
velopments in Chapter 3).

After this "sketching phase", the "learning phase" of CL extracts the de-
sired machine learning model parameters 8 € © from the sketch. This is
achieved by solving an optimization problem of the form

mingce Co (6; 20,1 )-

Since the cost Cg involves only the sketch of size m < nd (i.e., much smaller
than the volume of X), this procedure is typically much more efficient from
a computational point of view than the classical approach of learning di-
rectly from the entire dataset X, especially for large 7.

Intuitively, given a map P (e.g., Prer), the cost Co (6; z) captures the mis-
match between the vector z and another sketch, obtained using @, associ-
ated with the candidate model 6. To solve k-means for instance (where one
seeks a set of K centroids 0 = {ck}f:1 C R that best cluster the data), this
cost is given by Co(0;z) = ||z — £ Lx ®(cx)||2, i.e., the Euclidean distance
between the sketch of the data and the "sketch of the centroids" [KTTG17].

Numerical experiments demonstrated the power of CL, sometimes solv-
ing k-means clustering [KTTG17] and Gaussian mixture modeling [KBGP18]
with training time and memory consumption reduced by several orders
of magnitude compared to classical approaches. Moreover, formal sta-
tistical learning guarantees (bounds on the so-called excess risk) were de-
rived [GBKT17]: the risk is controlled whenever a form of Lower Restricted
Isometry Property (LRIP) holds, which translates the compatibility between
the sketch map @ and the target learning task. Proving this LRIP is how-
ever quite technical; e.g., see [GBKT20] for the LRIP between @ and k-
means and GMM. This makes the design of a compressive learning schemes
a bit rigid, as any deviation from the beaten path breaks the strong, but
tediously constructed, theoretical guarantees. The ambition of this chap-
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Dataset X . Model c.g., Gaussian Mixture
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Fig. 4.1 Our Asymmetric Compressive Learning (ACL) scheme: a
dataset X’ of n examples x; (sampled i.i.d. from Py) is first compressed as a
lightweight vector—the sketch—by averaging data features ¥ (x;). This op-
eration can be performed in parallel by a sensor network, which benefits
greatly from hardware-friendliness and quantization. A model 0’ is then
learned from the sketch zy y by solving a CL optimization procedure that
uses a different, differentiable map ® # ¥. Our goal is to prove statistical

learning guarantees (w.r.t. Pp) for the model 0.

ter is to somehow relax this constraint on a specific aspect: allowing the
designer to tweak the sketching phase (e.g., to further improve its compu-
tational efficiency) without having to re-prove the LRIP-based guarantees
from scratch.

The general asymmetric CL scheme More precisely, we study the sce-
nario where the feature map for the sketching phase (now noted ¥) is al-
lowed to differ from the one used for the learning phase (noted ®), i.e., we
consider the asymmetric CL (ACL) strategy modeled by ming Co (6; zy ),
with ¥ # ®. This scheme is interesting from a practical point of view
because both phases, occurring in different contexts, may require very dif-
ferent properties from their respective feature maps.

This is best explained by a concrete example, illustrated Fig. 4.1: con-
sider a sensor network, where each node collects a few data samples x;, and
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sends their contributions ¥(x;) to a centralized server which aggregates
1

them to construct the sketch zy y = ;YL ¥(x;). For efficient transmis-
sion of those numerous messages, quantization of the contributions ¥ (x;) is
critical. Moreover, to ensure low power consumption of the sensor nodes,
a compact hardware implementation of ¥ is highly desirable.

The learning phase however, being performed locally (i.e., on a single
workstation) and in software, does not benefit as much from these aspects.
Instead, the cost Cq(0; zy, x) must have meaningful minimizers (i.e., as en-
sured by statistical guarantees), and must be efficient to optimize; e.g.,
gradient-based algorithms [KBGP18, KTTG17] require differentiability of ®.
All these objectives do not necessarily align, and some are even incompat-
ible (for example, differentiability cannot be reconciled with the discon-
tinuity induced by quantization), hence the interest of allowing different

sketching and learning maps ¥ # ®.

Quantized sketching as our key motivating use-case We are particu-
larly interested in the quantized sketching scenario, i.e., where ¥ produces
binary contributions. Consider for example as reference map the random
Fourier features ® = Pggr (4.1). Computing Oy for each sample x; is typ-
ically done as follows: one must (i) record (in full-precision) the random
projections Q' x; € R”, (i) evaluate the complex exponentiation opera-
tion exp(i-), which is typically expensively done in software (e.g., through
Taylor series approximations?) and (iii) store (at least temporarily), in full-
precision, the resulting contributions P (x;) = ﬁ exp(iQ'x;) € C™.

A resource-preserving (e.g., computational or energy efficient) CL sen-
sor should directly and solely acquire ®ge(x;). While the random pro-
jections (i) can be computed relatively cheaply (e.g., using compressive-
sensing-based techniques [CRT06], such as fast structured random projec-
tions [CGK18] or, possibly relying on optical random processes [SCC16]),
the evaluation of the complex exponential (ii) is complicated to implement
in hardware—although this is the costliest step in fast (software) compu-
tations of the sketch [CGK18]. To add insult to injury, the resulting full-
precision values contributions in (iii) seem quite wasteful given their inci-
dental contribution to the overall sketch, an average of n > 1 such contri-
butions. This problem is even more striking when we assume the sensors
implementing the sketch feature map must then send their high-bitrate
contributions g (x;) over a communication network (see Fig. 4.1).

2 A good engineer would tell you to set sin(8) ~ 6, but that does not quite do the trick here.
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We propose a quantized sketch procedure that circumvents these limi-
tations, conceptually much simpler to integrate directly in hardware (e.g.,
using voltage controlled oscillators [YKJCO08])>. To achieve this, we replace
the costly exp(i-) signature function by 1-bit universal quantization [Bou12]
q(-) = sign(cos(-)) = 2([ 5] mod 2) — 1; this corresponds to taking the
least significant bit (LSB) of a uniform quantizer with quantizer stepsize 7.
Actually, motivated by the observations from Section 3.7 we rather con-
sider the complex extension gc(-) = q(-) +iq(- — 5) of this function instead
(depicted Fig. 4.3). Since in this chapter we always consider g¢, we redefine
our notations and simply denote the complex-valued universal quantiza-
tion function by g, dropping the ¢ subscript for convenience.

This thus amounts to replacing the RFF sketch contributions ®ger(x;) €
C"™ by quantized ones ¥, (x;) € ﬁ{il +i}™, obtained by taking the sign
of usual RFF:

¥y(x) = ﬁ sign (exp(i(QTx—i— Z,‘))) = ﬁ 9(QTx+9), (4.2)

where the sign of a complex number z € C is applied component-wise to
its real and imaginary part, i.e., sign(z) = sign (R(z)) +isign (3(z)) €
{#1 £1i}. The embedding ¥, is known as (the complex extension of)
the one-bit universal embedding studied, among others, in [Boul2, BR13,
BRM17] (see Subsec. 2.2.3).

Remark: As will become clearer below, our results allow to replace, in
the sensor implementing ¥, the complex exponential exp(it) by a com-
pletely generic periodic map f(t) (of which g(t) = sign (exp(it)) defined
above is a particular case). Remark that our results thus apply in partic-
ular to the case where, while the sensor can ensure the periodicity of the
embedded map f, the precise shape of f cannot be fully controlled, such
that we can’t really rely the sensor to accurately implement any specific
map—e.g., due to imperfections and non-linearities.

4.1.2  Chapter contributions

To set the stage, we remind the essential statistical and compressive learn-
ing elements we’ll need in Section 4.2 (which can be freely skipped if those
concepts are fresh in the reader’s memory). We detail the Asymmetric

3Even when the sketch is performed in software, the quantized sketch contributions are
still potentially quite cheaper to compute, albeit with a more modest gain compared to the
potential of hardware implementations (e.g., speed-up factor of about 2 on my machine, with
a naive Python implementation).
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Compressive Learning (ACL) strategy in Section 4.3, for which we provide
an intuitive justification.

In Section 4.4 we build solid theoretical guarantees for the ACL scheme.
We first prove a "general" statistical guarantee for ACL in Subsection 4.4.1.
To do so, we introduce a Limited Projected Distortion (LPD) property (cap-
turing, roughly speaking, the similarity between ® and ¥), which we com-
bine with the existing LRIP (which holds for ®). This result is "general” in
the sense that it makes no assumption on the task to solve or the maps ®
and ¥ (beyond the LRIP and LPD).

We then work towards concrete applications of this generic result in
Subsection 4.4.2, dedicated to proving that the LPD actually holds for spe-
cific choices of ® and ¥. To achieve this, we first introduce—at the cost of
an additional (but mild) assumption—a sufficient condition for the LPD,
called "signal-level LPD" (sLPD). Next, we prove the sLPD on one partic-
ular combination of feature maps, where the "learning phase feature map"
are random Fourier features ® = @y, and the "sketching phase feature
map " are random periodic features ¥ = ¥ ¢ studied in Chapter 3. This allows
to obtain at last, as a corollary of all the results above, formal statistical
learning guarantees for the ACL scheme for the pair (Pgsr, ¥4) considered
in the motivation above, which ensures the theoretical soundness of that
approach. To demonstrate the broader applicability of our results, we also
apply them to the pair (®Prer, ¥imoa), Where ¥,,,0q represents the—hardware-
friendly—modulo measurement map studied (among others) in [SH19].

Moving on, we provide in Section 4.5 extensive empirical validations
for the ACL strategy, confirming that, as our theory supports, it applies
various tasks (both k-means and GMM) and feature maps (such as ¥ od
the modulo measurements map). We highlight the practical advantage of
our quantized compressive learning strategy on a large-scale audio classi-
fication task. Finally, we conclude in Section 4.6.

4.2 Preliminaries

We here recall here the elements and notations from statistical and com-
pressive learning that are crucial to follow this chapter. To the attentive
reader, this section should not bring anything new to the table and can be
safely skipped, but since many different ingredients will be handled here,
we prefer to make sure that they are all fresh in memory. For the sake of
clarity, the main concepts and distributions introduced below and by our
further developments are summarized in Table 4.1.
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Concepts Description

M = ML (R?) Probability measure set.

P,oeM Arbitrary distributions in M.

Poe M Data distribution.

PoeM, 00 Parametric distribution (see Table 4.2).
G:={Pp|0 €@} C M Model set.

GcM Empirical set (see Subsec. 4.4.1).

X ={x}", Dataset with x; ~;; 4. Po.
Pyi=1y",6,€G Empirical distribution of X'

Table 4.1 Main concepts and distributions used in this chapter.

4.2.1 Chapter-specific notations and definitions

We consider learning examples living in the ambient space R?. The set
of probability measures over RY, ie., Mﬂ_(le) (see Section 2.4), is here
simply noted M, and 6. € M is the Dirac delta measure located at ¢ €
R?. To characterize the intrinsic dimension of a compact set 2. C ]Rd, we
use the Kolmogrov v-entropy [KT61]: for any radius v > 0 it is given by
Hy(X) := logCy(X) < oo, where C,(X) is the covering number of ¥. by
Euclidean balls of radius v, i.e.,

Cy(X) := min{|S|: S C X C S +vBf}, (4.3)

where the cardinality of S is written |S|, the d-dimensional unit ball w.r.t.
the £,-norm is IB%, and the Minkowski sum of two sets Aand Bis A+ B =
{a+b:ae A be B}. Werefer the reader to Subsection 3.2.1 for examples.

When dealing with generic periodic functions f : R — C, we assume
without loss of generality that f is normalized such that it is centered and
with period given by 27; it can thus be decomposed as Fourier series
f(t) = Tpez Fee™ where Fy := 5 OZHf(t)e’iktdt and Fy = 0. For such
functions, we introduced in the previous chapter the mean Lipschitz smooth-
ness property (Definition 3.13), to characterize the "smoothness on average",

that we recall here for convenience.

Definition 4.1. A 27-periodic function f : R — C is mean Lipschitz smooth
with mean Lipschitz constant L? if for all radii § € (0, 7r] the maximum

deviation of f in the interval [—4, d] is, on average, bounded by LJ@(S, ie.,

o Jo " sup,e s {If(+7) = f(B)]}dt < Lf -6 (44)

124 |



Preliminaries | 4.2

The advantage of this particular "smoothness" criterion is that is allows
to handle discontinuous functions; e.g., the maps depicted Fig. 4.3 are mean
smooth (see Appendix A).

4.2.2  Statistical Learning

In the statistical learning (SL) framework [Vap99,SSBD14] (see detailed de-
scription in Section 2.1), one assumes that the signals of interest are gener-
ated by a data distribution Py € M. The goal is then to fit some machine
learning model, parametrized by a vector 8 € O, to that distribution. More
precisely, one seeks the model parameters 6% that minimize the risk objec-
tive R(60; Py) := Erp, £(x,0), i.e., the expectation of aloss £ : RY x ® — R
with respect to the data distribution:

0" € arg rapeig R(6;Py) = arg Iéréig Eyp, £(x,0). 4.5)

In practice, the true data distribution Py is unknown, but a dataset
X = {x;}I' | of n samples x; ~;;q. P is available. The "ideal" risk mini-
mization (4.5) is thus replaced by empirical risk minimization (ERM), which
uses the empirical distribution Py = % Y1 0x, € M instead of the true
data distribution:

0 e argrgggR(ﬂ; Py) = argmin Yaex ((x;,0). (4.6)

In Section 2.1, we explained how many common machine learning task
can be cast into the SL framework. We recall the two tasks we will focus
on in this chapter, i.e., k-means and Gaussian mixture modeling. As sum-
marized in Table 4.2, k-means clustering seeks K centroids ¢; € RY which
minimize the sum of squared errors (SSE) over the dataset (the "error" is
the distance between each sample x; and the centroid closest to it):

SSE(6; X) := YLy ming << ||x; — ccll3 (4.7)

On the other hand, Gaussian mixture modeling (GMM) seeks a weighted
mixture of K Gaussians N (p;, Ty) (i.e., weights wy; > 0 that sum to one,
centers p, € RY, and positive definite covariance matrices I, € R**?) that
maximizes the log-likelihood (LL) of the dataset A":

LL(6; X) := Y-y log ( ey wepa (xi; i, Te)), (4.8)
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where pyr(x;u,T) is the probability density function of the Gaussian dis-
tribution A/ (p, T) evaluated at x.

The central goal of SL is to control the excess risk R(6; Py) — R(6*; P)
(also known as generalization error for prediction tasks), in the form of
statistical guarantees: for some 6 € (0,1) and 7 > 0, the ERM solution 8
satisfies

P[R(6; Po) — R(6%;Po) < 1] >1—0. (4.9)

In words, this guarantee ensures that, with probability larger than 1 — 6
over the sampling of &, the estimate of the ERM is not worse than the
optimal solution 8" (on the true data distribution Pp) by a margin smaller
than 7.

4.2.3 Compressive Learning with guarantees

Recall that CL actually introduces a general sketch operator Ag, which acts
on the space probability distributions M. This operator "compresses” any
input distribution P € M by computing m of its generalized moments, as
defined by the associated feature map ®.

Definition 4.2 (Sketch). Given a feature map & : R? — C™, the associated
sketch operator A : M — C™ is

Ap(P) i= Eyp ®(x) = [ ®(x)dP(x) € C™. (4.10)

In particular, the sketch of a dataset X = {x;} ;, noted zg x, is actually the
sketch of its empirical distribution,

zo,x = Ao(Py) = 1Y &(x;) € C™. (4.11)

We provide an informal outline (not fully rigorous but sufficient for
our purposes; see [GBKT17] for details) of how to "learn” (find good pa-
rameters 0) from the sketch with guarantees. One first associates to each
parameter vector 8 € © a distribution Py € M (this map 6 — Py is not
necessarily injective [SGD19]), which respects a risk consistency property:

R(0;Py) < R(6';Py), VO €O. (4.12)

Table 4.2 gives examples of this map for k-means* and GMM. When

#To emphasize the connection between the SL and CL formulations of k-means, we assign

in Table 4.2 equal weights + to all the Dirac deltas of the centroids J,; however the com-
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k-means clustering [KTTG17] | Gaussian Mixture Modeling [KBGP18]

0 centroids {c}X params. {wy, p, Te 1K,
o o € R wy >0, wp =1, € RY
[ e R, T] =T =0
£(x,0) ming [|x — e[ —log Yx wxpw (% e, Ti)
Peo a1 %0 Lk wieN (g, T)
Co(6;2) Iz — % Tk Pler) |12 Iz — Lk wi Ao (N (1, Ti)) |12

Table 4.2 Description of two SL tasks and their equivalent in the CL
framework. K-means seeks the K centroids ¢ that minimize the sum of
squared errors SSE(8; X'); in CL the parameters are mapped to a sum of
K Dirac deltas. GMM seeks a weighted mixture of K Gaussians N (p;, )
that maximize the log-likelihood of the data LL(6; X'); in this case CL sim-
ply maps the parameters to the GMM distribution itself.

the parameter vector 0 varies, the resulting distributions constitute a model
set G := {Pp|0 € O} C M. Learning then amounts to finding the
parametrized distribution Py from G whose sketch—with respect to ®—
best fits the dataset sketch zg v, as defined by the cost Co:

e arg min Co(6;z0,x) == [|za,x — Ao (Po)|2- (4.13)

Guarantees of the form (4.9) can be proven for this sketch matching prin-
ciple. The idea is to show (4.13) is a surrogate approximating (4.6). Intu-
itively, it is possible to solve a task from the sketch if it somehow "encodes"
that tasks risk objective. To assess how well the risk is encoded, [GBKT17]
defines a seminorm || - ||z to measure the difference between two distribu-
tions P, Q € M with respect to the task-specific risk R,

[P — Qg :=supyee IR(6; P) — R(6; Q)| (4.14)

Equipped with this metric, we say that the sketch operator Ag "encodes"
the risk R if the sketch distance || Agp(P) — Ae(Q)|2 bounds ||P — Q%
for all distributions in G; the Lower Restricted Isometry Property (LRIP)
formalizes this notion (this specific LRIP generalizes its well-known equiv-

plete formulation of CL k-means actually considers those weights as free parameters to be
optimized [KTTG17].
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alent from compressive sensing literature [CT05, FR17]).

Definition 4.3 (LRIP). The sketch operator Ag has the LRIP with constant
7 on the model set G, noted LRIP(7y; G), if

VP,Qed, [IP-Qlr <7lA4a(P) - Aa(Q)ll2. (4.15)

One key theorem of CL®, proved in [GBKT17], is that the LRIP implies
statistical guarantees for the sketch matching (4.13).

Theorem 4.4 (LRIP implies excess risk control). Assume that Ag has the
LRIP(y;G). The excess risk of the solution 8 to (4.13) satisfies R(8;Pg) —
R(6%;Po) < 1, where

n =2D(Py,G) + 47| As(Py) — Aa(Pr) |2, (4.16)
with D(P, G) a "distance” from P to the model set G,

D(P,G) = it {||P - Qllr +27]Aa(P) = As(Q)ll2}

The first term in (4.16) is a modeling bias term, the second one captures
a sampling error, which decreases with 7.

Theorem 4.4 guarantees that the excess risk is under control (bounded
by #) provided that the related LRIP holds; it remains thus to prove the
latter. This endeavor is highly specific to the considered model G (i.e., the
learning task) and feature map ®. One usually proves that the LRIP holds
with high probability 1 — 6 on the random draw of ®, where the failure prob-
ability 6 depends on the desired LRIP constant -, the complexity of the
model set G, and the number of "measurements" m. These proofs are rather
technical, see [GBKT20] for the case of compressive k-means and Gaussian
mixture modeling from RFF sketches.

Remark: While we focus on theoretical guarantees for to the sketch
matching program (4.13), it is worth remembering that this optimization
problem is usually nonconvex. In practice, heuristics, such as compressive
learning orthogonal matching pursuit (CLOMP) [KBGP18,KTTG17], thus ap-
proximately solve (4.13). Although they showed empirical success, one

5For the sake of presentation, Thm. 4.4 is taken from [GBKT17, Sec.2.4] which presents
a simplified but sub-optimal version of the "true" CL guarantees, established in [GBKT17,
Sec.2.5]. However, the extension we prove in this chapter can be carried over seamlessly to
the main CL guarantees, as the improvements from [GBKT17, Sec. 2.5] are independent of our
developments.
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should keep in mind that those heuristics do not necessarily find the global
solution , and that there might still be a performance gap between exper-
imental results and the theoretical statistical learning guarantees (which
apply to the global solution 8). This chapter mainly focuses on theoretical
guarantees, except for the numerical validation (Sec. 4.5).

4.3 Asymmetric Compressive Learning

To summarize, the typical CL scenario consists of two phases: the sketch-
ing phase which maps & to zg y by averaging some feature map ® over
the data samples, followed by the learning phase where 0 is extracted by
solving 8 € arg mingee Co (6; zp,x ), i.e., the sketch matching principle de-
scribed in (4.13). The success of this scheme can be guaranteed by estab-
lishing the LRIP of the sketch operator Ag associated to the "reference"
feature map P : RY — C™ (e. g., the random Fourier features, @), which
must hold over the relevant task’s model set G.

4.3.1 Asymmetric sketch matching principle

In this chapter, we extend this scheme by allowing the sketching phase
to use a different—or "distorted"—feature map ¥ # ® (e.g., the binarized
RFF, ¥, from (4.2)). This amounts to studying this asymmetric compressive
learning scenario (ACL for short): given a reference feature map ® and a dif-
ferent distorted feature map ¥, and having observed the "distorted sketch"
zy y = Ay (Py) = Ly ¥(x;), we select the parameters 8 that solve the
"asymmetric sketch matching" problem, i.e.,

-~

/
0 inCo (6; — i _ . 417
€ argmin @(0;zy,x) arggggﬂz‘w A (Po)ll2 (4.17)

To be perfectly clear, the "asymmetry" here refers to the fact that only the
sketching map is distorted, since we still use the reference map & to learn
from zy y, as precised by the subscript in the cost Cg (the only difference
with the symmetric sketch matching from (4.13) is the sketch map).

This (perhaps surprising) strategy is inspired by a well-known equiva-
lent in classical signal estimation: provided a signal follows a low-complexity
model (such as a sparse or a low-rank description), one can treat its non-
linearly distorted measurements as noisy linear observations, .., ignoring
quantization, with provable reconstruction guarantees if the involved non-
linearity respects a few mild conditions [PV16]. Our work adopts a simi-
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) (24 Prrr(c))

Zq

) (2RFF, "I’FF(C))

0 9

Fig. 4.2 Criterion (z, ®(c)) used to (greedily) select the first centroid ¢ =
[c1, c2] in compressive k-means—on a dataset (in blue) made out of K = 3
clusters in dimension d = 2—when guided by several CL cost functions.
For conciseness, we write the quantized sketch z; = zy_x and the full-
precision sketch zger =z, x. Surface plot and left contour plot: when
the (symmetric) fully quantized cost is used Cy, (6; z;); middle: asymmetric
cost Coyg (0; z4) (our proposed approach); right: symmetric un-quantized
cost Copyy (6; zrer), for reference.

lar approach to get risk control guarantees for (4.17), of the same form as
Thm. 4.4. This enables to quantify when (and under which conditions on
Y) the asymmetric sketch matching scheme (4.17) succeeds.

What not to do: a naive approach to quantized sketching At this point,
the interest of minimizing the asymmetric cost Co(6;zv x) = |zy.x —
Ag(Pg)|2, instead of the (more intuitive) symmetric "distorted" cost

Cy(0;zy.x) = ||lze.x — Av(Po) |2,

might not yet be fully clear to the reader. Well, we mentioned at the be-
ginning of this section the advantage of being able to differentiate the cost
function (i.e., compute the gradient VyCq(6; zy x)), but this is a techni-
cal issue rather than a fundamental one. In particular, one could imagine
other heuristics to still (approximately) solve Cy (6; zy v ), e.g., using vari-
ous strategies to carefully "smoothe" ¥ when computing the gradient—in
fact, this was exactly the subject of my Master’s thesis [Sch17].

However, the disadvantages of optimizing Cy(6; zy v ) go beyond the
lack of a gradient: the optimization landscape as a whole is simply much
harder to navigate in this case. This is illustrated on Fig. 4.2, which shows,
on the left, the landscape of (a criterion based on) this fully quantized cost
function; it is highly irregular, exhibiting many spurious optima. Empiri-
cally, optimizing this cost directly (using heuristics from [Sch17]) requires,
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to reach target performance, a sketch size about 20 to 50 times as large as
in the un-quantized case.

As we will see, the asymmetric cost function (on the middle of Fig. 4.2)
behaves much better in this regard. To explain this nicer landscape, we will
show that, in the context of random Fourier features sketching ® = gy,
the asymmetric cost approximates exactly the same cost as the un-quantized
scenario (on the right of Fig. 4.2). In fact, this analysis will not be restricted
to quantized sketching ¥ = ¥, defined in (4.2), but holds for more general
random periodic features (RPF) ¥ = ¥ ¢. This intuitive justification will be
further elaborated on in Section 4.4 to establish formal ACL guarantees.

4.3.2 ACL from RPF and quantized sketches

Before working on the guarantees of the ACL scheme, let’s build some un-
derstanding on why this scheme is interesting, by focusing on the case of
RPF sketches. Indeed, when the reference map & is the random Fourier
features map Prgr, our analysis allows us in particular to replace the com-
plex exponential in (4.1) by any (properly normalized) 27r-periodic func-
tion f : R = C, ie., to consider as distorted feature map ¥ the random
periodic features (RPF), extensively discussed in Chapter 3, defined as

¥p(x) = L f (nTx+g). (4.18)

Remark 4.5. Actually (as could be guessed from similar observations in the
previous chapter), the RPF sketch cannot be used "as such" in the ACL
optimization, but must be scaled by F;, the first Fourier Series (FS) coeffi-
cient of f. We thus consider the renormalized features ¥y := F%‘F r during
the ACL optimization procedure. This renormalization is not restrictive, it
can for example be performed after the sketch has been computed, since

_ -1
¥,x T REYpA

Motivation of the ACL cost with RPF sketches In this case, the ACL
scheme is motivated by the following observation: the asymmetric cost
approaches—in expectation over the uniform dither & ~ U™ ([0,27))—the
symmetric cost. Intuitively, the dithering ¢ allows us to "separate” zy X
into two terms: one associated with the low frequencies of f, that con-
tributes to the target objective Capyy (6; Zoggp, v ), and one "high-frequency”
term that is constant for the relevant optimization problem. This is for-
mally proven in the following proposition.
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Proposition 4.6. Given a fixed dataset X and parameter vector 0, a random
Fourier features map ®rer and an associated normalized random periodic features
map ?f (for some 27t-periodic function f). The (squared) ACL cost approximates,
on average on the draw of the dithering &, the (squared) symmetric cost up to a
constant:

g {CéRFF(e; z?f,é\» - CCZDRFF (6; Zd)RFFrX)i| = Cfx (4.19)

with cpx = HZ%,X”% — || zogep,x |13 @ constant shift depending only on f and
X, that does not impact the optimization procedure.

Proof. We give here only a sketch of the proof to provide the intuitive jus-
tification of ACL (adapted from [S]18b]). Rewrite AC := CéRFF(B; zy,, x) —

CZ

Dpep (05 Zaogpp,x) @S

AC = ”z?f,X - A':DRFF (PG)”% - HZCDRFF,X - A':DRFF(PG)H%

2 2
= llzg, 12 = 1zage, v 12 — 2R (25, 4 — 2o, v Adger (Po))

m
=crxt) Z
=1

with random variables defined as

Zj:= _2%[(% ineX(Wf/f(xi) — D (x7)) ) Ag '(7)6)]

DREE,]

We can then show that each random variables Z; has zero mean. The full
argument is not developed here but is completely analogous to the one of
Proposition 3.8, which relies on Fourier series expansions and the orthog-
onality of the complex exponentials Ez e¢ = 4y . O

Specific RPF sketches of interest Besides usual RFF (a special case of
RPF), we consider two specific instances of RPF sketches, which are illus-
trated by Figure 4.3.

Of course, the first one is the running example we used since Section 4.1,
namely the quantized RFF ¥, , defined by (4.2), for which

f(t) =q(t) :=sign () € {+1+i}, (4.20)

with sign acting independently on the real and imaginary component—
i.e., thereal and imaginary components of g are phase shifted "square waves".
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1 f(t)= (‘/)l(p(it) f(t)=q(t) f(t) = fmoa(?)

_1 - "'.‘ . - . . _1 - ; L ; L
—2r—m 0 w 27 —2n—n 0 @ 27 —2r—m 0 @ 27

Fig. 4.3 The 27-periodic functions f : R — C of particular interest (Rf
in plain, 3f in dashed), related to RPF ¥¢(x) = imf(ﬂ—rx + &). Left,
the complex exponential exp(i-), related to the usual random Fourier fea-
tures ®ggr; middle, the one-bit universal quantization function g, related to
quantized RFF ¥; and right, the (complex and normalized) modulo func-

tion mod, related to the modulo features V4.

This feature map is (the complex extension® of) the so-called "one-bit uni-
versal quantization" introduced in [Bou12], and further studied in [BRM17].
The two main advantages which motivated us to consider ¥, are that (i) it
produces quantized sketch contributions” ¥, (x;) € {% }™, which heavily
reduces the cost of their (potential) transmission or storage (e.g., ¥4(x;) can
be trivially encoded using only 2m bits); and (ii) it is amenable to plausible
hardware implementations (even if g is implemented in software, it is still
cheaper to evaluate than exp(i-)).

Another particular case of the RPF with promising applications is the
(complex) modulo RFF ¥ 04 defined as

f(t) = mod(t) := mody,(t) +i-mody,(t—5) €C, (4.21)

where modr(t) := 2(% — [ £]) — 1is the "normalized" modulo T operation—
i.e., the real and imaginary components of mod() are phase shifted "saw-
tooth waves" (Fig. 4.3). These modulo features take their roots from the re-
cent theory of modulo sampling of signals [BKR17], and—much closer to our
definition of ¥ ,,,«—its extension to compressive modulo measurements of
structured signals [SH19].

As explained in [BKR17,5H19], the advantage of this scheme is the ex-
istence of dedicated modulo sensors (e.g., using self-reset analog-to-digital
converters [RJ03]) which again paves the way for efficient hardware compu-
tation of the sketch contributions ¥ .4 (%;).

®While we focus on complex-valued maps (¥, ¥moa), as motivated by Section 3.7, their real-
valued counterpart (?E‘Fq, RY¥ moa), closer to their initial formulations in the literature, could
very well also be considered.

The sketch itself (i.e., after averaging) is not necessarily quantized.
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Finally, we recall that as remarked above, the RPF are also of interest
if one seeks to implement f in hardware sensors but can only ensure its
periodicity, without accurate control of its precise shape f due to imperfec-
tions.

What now? Let’s take a step back. We formally defined, in Subsection 4.3.1,
the generic ACL strategy. To keep things concrete, in Subsection 4.3.2, we
took some care to explain in detail the application of this strategy to the
case of RPF sketches, providing an intuitive justification on why it is ex-
pected to work (Prop. 4.6), and further detailing the practical relevance of
RPF sketches.

However, Prop. 4.6, while a promising start to gain intuition, does not
guarantee anything regarding the excess risk achieved by ACL (e.g., for fi-
nite values of the sketch size m). In the next section, we provide formal
guarantees for the ACL scheme. In particular, in Subsection 4.4.1 we pro-
vide a guarantee for the generic ACL scheme by building upon the existing
LRIP; this ensures that our result can be applied to other and future sketch
constructions, provided these satisfy the LRIP. Then, in Subsection 4.4.2 we
turn our attention back to RPF sketchs in particular, for which we provide
explicit instances of this guarantee.

4.4 Excess risk guarantees

4.4.1 A generic guarantee for ACL

Our goal is to prove guarantees in the spirit of Thm. 4.4 for the ACL scheme.
To derive unifying guarantees for each combination of model set G (task),
reference map ¢ and distortion ¥, we build upon the existing LRIP (char-
acterizing the compatibility between G and @), which we combine with
another property, the Limited Projected Distortion (LPD) property (extend-
ing its definition from [X]J20]). The LPD better characterizes the closeness
between the distorted and reference sketches, zy y and zg x, than the too
restrictive Euclidean distance ||zy v — zg, v ||2: for example, with the quan-
tized RFF sketch, this distance does not vanish as m grows to infinity.

The LPD relies on an additional assumption characterizing over which
datasets X’ it should hold.

Assumption 4.7. There exists a set G C M, coined empirical set, such that,
for any considered dataset X, the empirical distribution Py belongs to G.
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Note that Assumption 4.7 is quite permissive. We allow in particular to
pick Q = M, which means it holds trivially. Moreover, even when Q\ M,
it is quite mild; it is for example fulfilled under the natural assumption that
the data samples x; belong to a bounded domain X (more on this later).
That being said, we can now formalize the LPD.

Definition 4.8 (LPD). Given the empirical set 6 C M, anerrore > 0, a
reference sketch operator Ag, and a (task-dependent) model set G C M,
we say that the distorted sketch operator Ay satisfies the LPD of error € on
G with respect to Ag and G, or shortly LPD(e; GG, Ag), if

VPeG QeG, [(Ay(P)— As(P), As(Q))| <e. (4.22)

In words, the LPD thus ensures that, for any considered dataset X, the
difference between its distorted sketch zy y and its reference sketch zg x
is sufficiently small when projected on any possible "reference sketch" of
the model set, i.e., projected on any Ag(Pg) for all parameters 8 € ©. As
made clear below, {Ag(Py) : Po € G} contains actually the "directions"
that matter for solving (4.17).

Our first main result (Prop. 4.10) states that if the reference sketching
operator Ag satisfies the LRIP, and the distorted sketching operator Ay
the LPD, then the excess risk of the ACL solution (4.17) can be controlled.
To prove this, we adapt the proof of Thm 4.4 found in [GBKT17,KG18], and
we leverage the LPD to show that distorting the sketch does not modify the
cost function too much—as first shown in Lemma 4.9.

Lemma 4.9. Assume Ay satisfies the LPD(e; GG, Ag). For any 73X € G, the

asymmetric sketch matching solution 0 to (4.17) is sub-optimal with respect to
the symmetric matching solution 0 to (4.13) by at most

Co(0';20,1) — Co (B z0,x) < 2Ve. (4.23)

Proof. For conciseness, we drop the X’ subscript and denote a := A (Pp),
a':= Ag(Pj). The LPD implies both

lzy — all3 - llzo — al} < 2e + ||z¢ 3 — l|zol3,
lzo — a'll3 = llz¢ — a'[l3 < 2e + ||z |13 — [|l2¢[3.

By optimality of (4.17), |zy — a’||2 — ||zy — a||3 < 0, and adding the three
inequalities together gives ||ze — a’||3 < ||ze — a3 + 4€; a square root
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completes the proof. O

Proposition 4.10 (Asymmetric sketch matching risk control). Assume Ag
satisfies the LRIP(y; G) and Ay the LPD(e; G,G, Aw). The solution 0 to the
asymmetric problem (4.17) satisfies R(@’; Po) — R(6%;Py) < #', where

' =2D(Py, G) + 47|l Aa(Po) — Ao (Px) |2 +47Ve, (4.24)

with D(P,G) as in Thm. 4.4

Proof. We use the same notations as in the previous proof. For some arbi-
trary Q € G, since || - ||z is a seminorm [GBKT17],

1Py = Pollr < [Py = Qllr + 12 = Pollx-
Since Py, Q € G, the LRIP and the triangle inequality give
1Py = Qllr < 7l As(Py) — Aa(Q)ll2
<vlla’ — zoll2 + 7lze — Aa(Q) ]2
Using Lemma 4.9 then the optimality of (4.13), we get

P,-Q
o 9% <2/ +|la— zolla + 120 — As(Q)]2
v

< 2ve+2[|ze — Ao (Q)ll2-
We develop the second term with the triangle inequality,

[ze — Aa(Q)|l2 < [[zo0 — Aa(Po)ll2 + | Ae(Po) — Aa(Q)l2-

Gathering the results, and taking the infimum with respect to Q € G, we
!
obtain that [Py — Pollr < L, with

!/

L =D(Po,G) +27lIze — Aa(Po)ll2 + 27Ve.

Finally, we combine this with the risk metric definition (4.14), and since the
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map 0 — Py satisfies the risk consistency property (4.12), we get
R(®;Po) ~ R(67; )
= R(0;Po) — R(8;Py) + R(8;Py) — R(67;Py)
+R(6%;Py) — R(6%;Po)
'77/ +0+ ’77/ =17

IN

O

For comparison, the excess risk guarantee of Prop. 4.10 for the asym-
metric sketch matching solution (4.17) is thus exactly the same as the guar-
antee in Thm. 4.4 for the symmetric solution (4.13), up to the additive term
4./€ in the excess risk bound (i.e., ' = 1 + 4y/€), which expresses the
"mismatch" between ¥ and ®. Whenever the LPD holds with a reasonably
small error €, we can thus expect that the asymmetric scheme (learning
from the distorted sketch zy y) will perform almost as well as the symmet-
ric one (learning from the reference sketch zg y).

Of course, it remains to show that the LPD actually holds in practice to
complete this guarantee, which we tackle next.

4.4.2  Proving the LPD for quantized CL

In this subsection, we first provide one possible strategy to prove the LPD.
Under an additional assumption (which we first introduce and show to be
met in practice for k-means and GMM), it is sufficient to prove a somewhat
simpler "signal-level" version of the LPD instead (which we call signal-
LPD, or sLPD for short). We then apply this strategy to the specific case
where ® = @y are the random Fourier featuresand ¥ = ¥ £ are generic
random periodic features (4.18), i.e., the same RFF but where t — exp(it)
is replaced by a generic periodic function f (). This finally allows us to ob-
tain, as a particular case, statistical learning guarantees for the quantized
CL scheme introduced in [S]18b], i.e., where the distorted map is the bina-
rized RFF ¥ (4.2). To demonstrate the generic nature of our result, we also
apply it to the modulo features ¥ 4.

Assumption on the data domain

In practical machine learning applications, the data vectors x; do not take
any possible value in R¥—one can usually assume a priori that they belong

| 137



4 | Quantized Sketching with Guarantees

to a compact set 2 C R. We extend this assumption to the probability dis-
tributions involved in the compressive learning problem (4.17), i.e., to the
empirical distributions 73;( €eg (see Assumption 4.7) and the parametric
distributions Pg € G.

Assumption 4.11. For a compact set L C RY, the model set G and the em-
pirical set G are subsets of My ; C M, the set of probability measures that
are mostly supported on %, i.e., forsome 0 < 7 <1, G, GcC My  with

Msr={PeM:PE)=[dP>1-7(}. (4.25)

In particular, for { = 0 all P € My are "almost surely" supported on
¥, ie., supp (P) C X

Assumption 4.11 holds in practice. Consider the common case where
there are known lower and upper bounds I, u € R? for the values that the
learning samples x; can take (e.g., due to physical constraints). This means
that all the learning examples lie in a "box" X, C R%:

xiEZLu::{xe]Rd:lngu}.

Since all the examples of any considered dataset X necessarily lie in that
box, this directly implies that all the related empirical distributions PreG
satisfy Py € Mz, ,0-

The inclusion of the model set G can be reached from additional con-
straints on ©, imposed during the optimization procedure. In the simplest
case, the k-means task (Table 4.2, left), the optimal centroids obviously lie
inside the data-enclosing box, hence it makes sense (as done in [KTTG17])
to restrict the problem to ¢ € X;,. These constraints can be encoded in
©, which in turn imply that G C My, . If the data-enclosing box ¥, is
known, Assumption 4.11 thus holds for k-means, with ¥ = ¥; , and { = 0.

For the Gaussian mixture modeling task (Table 4.2, right), one can simi-
larly enforce that the Gaussian centers lie in the box y; € ¥;,. Moreover,
given that the data lie in a bounded domain, it is also reasonable to bound
the variance of the Gaussian modes (the typical spread of a Gaussian mode
should not be much larger than the box). This can be done by bounding the
eigenvalues of the covariance matrices Ty, i.e., Amax(Tx) < S for a bound
S > 0 to be set according to the size of the box. Assuming diagonal covari-
ances, as commonly done CL for GMM [KBGP18], the following lemma
shows that G C My, . for some slightly extended set ) 5%, and
small ¢ > 0.

138 |



Excess risk guarantees | 4.4

Lemma 4.12 (Assumption 4.11 for GMM with box contraints). Let G be the
model set of a GMM task with diagonal covariances Ty and the box constraints
M € Xpy and Amax(Ty) < S. Given p > d, we define the bounds of an "ex-
tended” box 1 = 1 — pSland i = u+ pS1, with1 = (1,1,..,1) € RY. Then,
for () = erﬁ, we have

GC My, withiSe?.

Proof. From (4.25), we can set { = sup{ [so.dP : P € G} to ensure
g C My o ey the maximal failure probability is reached when the

largest amount of the GMMs probability mass lies outside »(0). For diago-
nal covariances, this is reached if we have both I'y = S, i.e., the Gaussian
is maximally spread in each dimension, and, by symmetry, each Gaussian
mode is located at a corner of the box %;,, e.g., with g, = u for all k.
Denoting by P* C G this GMM configuration, we easily show that, for
20 =55 ie, 20 = %, 4+ pSBY,, [5) dP* is bounded by ¢(p), with
¢ the cumulative density function of a one-dimensional standard normal
random variable. Using well-known Gaussian tail bounds [Ver18], we get
{=1-9¢%) <d-¢(p) < ﬁe”’z/z, which decays exponentially fast in

p; in particular S e~*" when p>d. O

To wrap up, Assumption 4.11 thus seems fairly reasonable for the GMM
task as well. There is however still the issue of which value of p one should
pick in Lemma 4.12; we’ll come back to this nontrivial question at the end
of this section.

Reducing the LPD to the signal-level LPD

Under Assumption 4.11, to have the LPD, it is sufficient to prove a simpler
"signal-LPD" (sLPD) over X, defined as

Vx,y e L, [(¥(x) — D(x), P(y))| <es. (4.26)
This is formalized by the following lemma.

Lemma 4.13 (sLPD implies LPD). For a compact set X and 0 < { < 1, as-
sume G, QA C leg and the sLPD (4.26) holds on % with error €5. Moreover,
assume that the feature maps are bounded, sup,cgs [|P(x)[l2 < Co (similarly
for ¥). Then, Ay has the LPD(€;G, G, Ag) with error € = €5 + c{, where
¢ <3Ce(Cop + C\}/).
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Proof. Define the "difference kernel"

K(x,y) = (Y(x) — (x), P(y)),

which is bounded by |«(x,y)| < Ce(Cp + Cy) =: C; using Cauchy-Schwarz.
Given any P, Q € My, we have

|(Ag(P) — Ao(P), Aa(Q))| = |xLEP yLEQ K(x,y)|

< Eyop ]EyNQ |i€(x, y)|

= I(%,%) + (24, %) + (%, %) + I(X€,°)
< e+ Ce(20+ %)

S €s + 3CE§/

with I(U, V) := [,; [, |§(x,y)| dP(x)dQ(y), U,V C RY. O

Combining with Prop. 4.10, under Assumption 4.11, the sLPD (4.26)
with error €; thus implies the excess risk is controlled, with an additive
increase given by 4+/€; + c¢{ compared to Thm. 4.4.

Proving the signal-LPD for random periodic features

The tools developed up to now were purposefully as general as possible.
We now focus on proving the LPD for the case where the reference feature
map are random Fourier features (4.1) ®gsr, and the distorted feature map
are random periodic features (4.18) ¥¢(x) := ﬁ f(QTx + &). Recalling
that in Prop. 4.6 the RPF feature map must be scaled by Fj, the first Fourier
Series (FS) coefficient of f, we actually consider the renormalized features
Y= F%‘I’ ¢ during the ACL optimization procedure.

We can then prove our second main result: the LPD (4.22) holds—with
high probability on the draw of (2 and {—for the (normalized) RPF sketch
operator. The proof is based on Lemma 4.13 to reduce the LPD to the sLPD,
and the latter is shown using Corollary 3.17 from Chapter 3.

Proposition 4.14 (LPD for normalized RPF). Let us consider a compact set
with Kolmogorov v-entropy H, (%) < oo, and

o the random Fourier features @y defined in (4.1) associated with the distri-
bution A (which generates the m columns of Q2), with smoothness constant

CA += MaX,eRe af,=1 Ew~n lw'a| < o, (4.27)
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e the related RPF ?f = Fil‘I’f, with ‘I’f defined in (4.18), and f a periodic,
mean Lipschitz smooth function with constant L? < oo (see Def. 3.13), FS
coefficients { F }ren, and Cy := (1 + || flloo/[F1]) < 0.

Given some 0 < { < 1and €y > 0, assume that:

i)G,G C My ¢ (Assumption 4.11);

(ii) the sketch dimension m satisfies
m>128- €% Heyye, (%)

with constant ¢y := 4Cx (4 + L?/|F1|).

Then, with probability exceeding 1 — 3exp(—me3/64) on the draw of Q and
¢, the normalized RPF sketch operator A?f has the LPD over G with respect to
Aoy, with error

€= Cf(€0 + 3§)
Proof. Let us define the periodic function f(t) = & (l_-i1 f(t) —exp(it)), with
D := max(L || £ f(-) — exp(i-)||eo). Since [ exp(i-)]le < 1and ||flleo < 1,

Corollary 3.17 ensures that, forany g > 0,if m > 128 - ¢, 2. Hey/c (%), then,
with probability at least 1 — 3 exp(—me3/64), we have for all x,y € &

o~

i (fQ 2 +8) exp((QTy +0)))] < e, (4.28)
where the constant ¢ in the metric entropy radius is

c=4Cp(LE+L!

7+ Lexpiy + 2min(LY, L” i)

7 Texp
By definition of f, Drrr, and Wf, the bound (4.28) is equivalent to the sLPD
property (4.26) with error €5 = Dey.

The mean Lipschitz constant of the relevant functions reads LZ «p(i) <1

I3 1.1 7H H : :

and L 7 <D (WL Pt Lexp(i.)), and we further simplify the bound us-
. . wopH U . .
ing mln(Lf, Lexp(i.)) < Loy Since D > 1, we thus get that c is upper

bounded by

4CA(B+ DM (1 + L)) < cp = 4CA(4+ L),

We can now turn the sLPD (4.28) into the LPD (with a proper rescaling
of the error) by applying Lemma 4.13. We note that Coy, < || exp(i-)|le =
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1 and Cy, < |f/Fillec = |Iflloo/|F1], which implies that 3Cappp (Cagpr +
C?f) < 3(1+ [|fll/|F1]) = 3Cs. Finally, since D < (1+ ||fll/F1) = Cy,
Lemma 4.13 shows that the desired LPD holds with error C¢(eg + 37).

O

ACL guarantees for quantized or modulo contributions

To formulate our final guarantees and use Lemma 4.12, we need this bound
on the Kolmogorov entropy of 27, D Xy .

Lemma 4.15. In the notations of Lemma 4.12, we have
5 Vd(2p5+|[u—1]leo)
Hy(Zg;) < dlog (1+ - ). (4.29)

Proof. Since X, C ¢+ (pS+ r)BL, with 2¢ = I + uand 2r = ||u — [||«, the
entropy of Y is bounded by the one of B := (pS + r)BY,. From Lemma
4.10 in [Pis99], given v/ > 0, there exists a 1v'-covering S of B in the {co-
metric—i.e., for all x € B, there is one g € S such that [|x — gljec < V/—
where |S] < (1+ M)d. Since [|x — gl > [|x — gll2/V4d, S is also a

(¢2) covering of B with radius v/v/d. Taking v/ = v/+/d shows that the
Kolmogorov v entropy of B, and thus that of ¥, is bounded as in (4.29).

O

We can finally combine all our results together to obtain statistical learn-
ing guarantees (excess risk bounds) for the ACL problem with RPF sketches
(and in particular, for quantized or modulo RFF), when solving the tasks
of k-means and GMM specifically, under the assumption that the data is
constrained in the box ;.

Corollary 4.16. In the notations of Prop. 4.14, consider @' the solution to the ACL
problem (4.17), where the sketch is obtained by the normalized random periodic
features ¥ r, and the reference sketch map is Ogyy.

We assume that, (i) all the data samples lie in a box X, and the known
upper and lower bounds 1 and u are used to restrict the optimization procedure
(for GMM, a constant S is also used to upper bound the variance of the modes),
and (i), the LRIP holds for @ on the chosen task with constant .

Then, given €y > 0, we have the following guarantees with probability at least
1 —3exp(—me3/64):
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o [for k-means] If the sketch size is at least

m =128 52 dlog (14 LVt

7

then, for Cyy, 1= 47v,/C 'z the excess risk is bounded by

~/ «
R(8;P0) —R(6%Po) <1+ Ciam /€0,
with y the excess risk in symmetric CL (4.16).
* [for GMM] For some p > d, if the sketch size is at least,

o VA i)y

€0

m2128-662~d10g(1+

then the excess risk is bounded by

R(0';Po) — R(6%Po) < 17 + Cimv/€0 + Cgmm - ¢ /%,

. 9C2 1
with Cgmm := 47(2—7{) 4, and 17 and Cyy, as above.

Proof. The proof consists in applying Prop. 4.10 and Prop. 4.14, combined
with Lem. 4.12 and Lem. 4.15, the entropy of X; , being found by setting
o = 0in (4.29). O

A few remarks can be made about this corollary. First, we rely on the
fact that Oy satisfies the LRIP; actually, ensuring that this holds (with high
probability on the draw of Q) imposes additional constraints on m. They
depend on the considered task and the complexity of the related model
set G; for example, for a GMM with K modes in R?, we should have m =
Q(Kd), up to some additional factors and restrictions on G (see [GCK 20,
Sec. 5.5] and [GBKT20]). Second, the choice of the parameter p necessitates
solving a trade-off: increasing p decreases the excess risk bound (excess
risk proportional to eP*/4), but at the cost of logarithmically increasing
the required sketch size m.

Finally, Cor. 4.16 allows us to determine which between quantized or
modulo RPF requires more measurements. Indeed, referring to Appendix A
for the relevant constants, we compute that

V5
o 1+ 0 —1+7<Cm0—1+7
= (1+lqlle/1Q1l) 23 g 1
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as well as
g =4CA(4+ L /|Q1]) = 24CA < Crmoa = (24 +2V2)Ch.

Therefore, both for k-means and GMM, the sample complexities and the
excess risk bounds of Cor. 4.16 shows that, while requiring a higher num-
ber of measurements, ACL with modulo features gets a higher bound on
the excess risk compared to that of a quantized sketch. Thus, the sketch
size must be further increased (to allow a smaller €3) when using modulo
sketches in order to meet quantized sketch performance®. We observe this
effect experimentally in the following section.

4.5 Experiments

In this section we validate the ACL approach through various practical
numerical experiments. In a series of synthetic data experiments, we first
cover compressive k-means with quantized contributions ¥, (which we
call QCKM), for which we closely analyze the required sketch size compared
to the full-precision CKM. We then extend our results to the ACL scheme
with the modulo feature map Y., for the GMM task, and explore the
impact of the dataset size. We then turn to large-scale real-life datasets, and
apply ACL to spectral clustering of handwritten digits, sensor readings,
and audio feature extraction for event recognition.

Remember that the cost Co(6; z) is not convex, and that the symmet-
ric and asymmetric compressive learning problems, described respectively
by (4.13) and (4.17), cannot be solved exactly in practice. To approximate
those solutions, we thus mainly use the CLOMP greedy algorithm [KBGP18];
the exception is the last experiment which uses the Gaussian splitting algo-
rithm (algorithm 2 in [KBGP18]) for better performance when the number
of Gaussians K is large.

Remark: Since the cost Co(6; z) behaves in the same manner with re-
spect to 6 in the ACL case (z = zy x) as in the usual symmectric CL case
(z = zg,x), we can use the exact same algorithms in both scenarii.

Implementation details and metrics We first consider a controlled envi-
ronment, where we generate a synthetic dataset X according to a known
"ground-truth" Gaussian mixture model Py. To evaluate the quality of a

8This could be intuitively expected given our "signal-level" observations in Section 3.7.
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CL solution 5, we use the empirical excess risk,
AR(0) := R(6; Py) — R(6;Py), (4.30)

where the empirical risk minimizer 8 is estimated by keeping the best out
of several independent trials of traditional ML algorithms operating on
the full dataset: the k-means++ algorithm [L1082, AV07] for k-means clus-
tering, and Expectation-Maximization [M0096] for GMM. Referring to Ta-
ble 4.2, for k-means the empirical excess risk corresponds to the excess
SSE (4.7), AR(8) = SSE(8; X) — SSE(6; X), while for GMM, AR(6) =
LL(6; X) — LL(6; X) is the excess negative log-likelihood (4.8). Because
the performance depend on the random draw of 2 and ¢, we perform sev-
eral independent trials of (A)CL and report the median performance.

The numerical value of the excess risk, while relevant to our theoretical
guarantees, is not always easy to interpret. Therefore, another metric we
use to assess the quality of solutions 8 is the success rate: the average num-
ber of "successes" obtained over all trials. For our purposes, we arbitrarily
define the "success" of solution @ as follows: when we solve k-means, 6
succeeds if SSE(B X) < 1.2 x SSE(6; X); when we solve GMM, 8 succeeds

if LL(6; X) > M (where we ensure LL(6; X') > 0).

4.5.1 Synthetic data: Quantized Compressive K-Means

We first empirically verify that quantized compressive k-means (QCKM) re-
quires only m = O(dK) measurements to find good centroids, with a hid-
den multiplicative constant only slightly higher (15 to 25%) than for (full-
precision) compressive k-means (CKM)—remembering that QCKM receives -
bit sketch contributions whereas CKM uses full-precision contributions.

To do so, we compute phase transition diagrams (Fig. 4.4) to highlight
the relationship between the required amount of measurements m, and the
ambient space dimension d or the number of clusters K. These diagrams
show how the empirical success rate (as defined above, averaged over 100
trials) of QCKM evolves with m, as d or K varies.

First, we draw n = 10* samples uniformly from P, a mixture of K = 2
isotropic Gaussians in varying dimension d, with means +(1,---,1)T € R?
and covariance matrix sz)Id- The phase transition diagram is reported
Fig. 4.4a, along with lines showing the transition to more than 50% suc-
cess rate of QCKM (red solid) and, for comparison, of CKM (yellow dotted).
This transition happens (except for a deviation at small dimensions) at a
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Fig. 4.4 Empirical success rate—from 0% (black) to 100% (white)—
evolution of QCKM with m/nK, and (a) 7, or (b) K. The red solid line shows

the transition to a success rate above 50% for QCKM; for comparison, the
yellow dotted line shows the same transition for CKM.

constant value of m/dK: as CKM, QCKM requires m to be proportional to d.
In this experiment, QCKM requires about 1.13 more measurements than CKMs
(complex and full precision) measurements.

Fig. 4.4b is the phase transition for varying numbers of centroids K while
fixing d = 5. Samples are drawn from K Gaussians with means chosen ran-
domly in {£1}4, other parameters being identical to the previous experi-
ment. Successful estimation occurs when m scales linearly with K, with
a factor of about 1.23 between QCKM and CKM sample complexities. These
experiments suggest that CKMs empirical rule m = O(dK) holds for QCKN,
with a slightly higher multiplicative constant.

4.5.2  Synthetic data: quantized versus modulo sketch contributions

For this next experiment, Py is a mixture of K = 10 Gaussian modes in
dimension d = 5, from which we draw a dataset X of n = 10° samples. We
then sketch this dataset, using the standard random Fourier features ®ggr,
but also the quantized RFF ¥; and the modulo feature map ¥ .4, and solve
both k-means and GMM from those sketches’. We draw a varying amount
m of random frequencies w; ~j;q4. A from A given by the "Folded Gaus-

9The fully symmetric CL case, where @y is used for sketching, does not require the dither
¢, so we impose { = 0 in that case. In the asymmetric case, recall we moreover perform a
. . _ 1 .
normalization S S before learning.

146 |



Experiments | 4.5

~ 2
& N --e-- Oppr 10 \
104 “\\‘ \I/ 1 ‘\ \\
|‘ \;\ -—a-- q 10 \\ A\
Q K ‘\ (2 \\ ‘\
< VT Tl Y
5 10°1 1k 5 N
= 1 \ AN = 1 \ N,
% .\\ \L\ % 10 i\\ \L\\‘\
(NN LN Sal
8 1074 e 8 10 Teml e,
> ‘:‘\\ \\ x ™S
L Nl L ..
\{:‘\:A\\ 1075 ‘\\ R S~m
104 \\=‘\ Sa \.‘~.~‘.
1: 104 """-o--..__.
100 10t 102 10! 102
o 1.01 | i o 1.0 Rt iale ottt
-'(E b I'e ‘a Ky A
—_ / ,l ', —_ {/ ’/ //
% o/ I % [ ¢
@ 05 I @051 ;17
o 1o o [
(] [l ] ! ;o
> ! ! > g A A
200 R D gokkls
100 10! 102 10! 102
Sketch size m/Kd Sketch size m/Kd
(a) k-means (b) GMM

Fig. 4.5 Top: empirical excess risk (4.30) for the k-means (left) and GMM
(right) tasks, as a function of sketch size, obtained by the following (A)CL
strategies: usual symmetric CL with ¥ = ® = ®gg (blue circles), asym-
metric CL with quantized sketch contributions ¥ = ¥, (green squares),
and modulo sketch contributions ¥ = ¥,,.4 (red triangles). Each data point

is the median out of 25 or more independent trials. Bottom: the associated
success rate.

sian" heuristic described in [KBGP18], with scale 02 = 1%W for k-means
and 02 = ﬁ for GMM. Compared to a Gaussian distribution, this folded
variant improves the sampling of low frequencies.

The results are shown Fig. 4.5. From Fig. 4.5a, as we already observed
in the previous experiment, in the case of k-means one can use quantized
sketch contributions with only a minor performance decrease (or, equiva-
lently, a slight increase of the sketch size reaches the same performance).
Moreover, ACL with modulo sketch contributions is also successful, but
the sketch size (to reach a given performance level) must be larger than
in the quantized case. This is indeed what would be expected from our
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Fig. 4.6 Empirical excess on a synthetic dataset of total size 11 = 10 of so-
lutions obtained through ACL where one sketches a subset of the dataset
with varying sizes n (dotted, dashed, plain lines for n = 102,10%,10° re-

spectively), using the full-precision sketch (blue circles) or the quantized
sketch (green squares), as a function of the sketch size m.

theoretical results, as explained at the end of Sec. 4.4.2.

From Fig. 4.5b, we can observe that quantized or modulo ACL is also
applicable to the task of GMM. As suggested by Cor. 4.16, the required

sketch size (to reach equivalent performance) increases more for this task
than for k-means.

4.5.3 Synthetic data: influence of the dataset size

Next, we study the role of the dataset size in the ACL scheme (focusing
on quantized ACL). Unless explicitly mentioned below, all parameters are
identical to the previous experiment. We first generate a "full-size" dataset
X (with size 1 = 107) from the previous GMM Py. For each trial, we use a
smaller dataset X" for compressive learning obtained by picking uniformly
at random a subset of n samples (without replacement) in X'. Here, the

empirical excess risk AR is evaluated using the full dataset X’ (the ERM
minimizer 6 being also learned on this full dataset).
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The results are shown Fig. 4.6. As can be observed from Fig. 4.6a, hav-
ing a larger amount of samples n improves the performance (at constant
sketch size m), as could be expected. In terms of excess risk guarantees,
this can be related to the sampling term 7| Ao (Py) — Ao (Py)]|2 in (4.24).
When m increases, the excess risk quickly saturates on smaller datasets,
but in the two larger-size datasets (n = 10* and 10°) this is not the case. An
interesting phenomenon can be observed by looking (very) closely at those
last two curves: there is a "crossing" between m /Kd = 10 and m /Kd = 100.
When the sketch size is small, the curves are grouped by sketching feature
map Y (i.e., by color); the dominant effect on the excess risk is whether the
quantized sketch is used or not, regardless of the dataset size, which in our
theoretical results can be associated with the LPD error term €. But as the
sketch size increases, the curves are grouped by dataset size instead (i.e.,
the plain and dashed curves go together); the dominant effect is now the
sampling error. This can be explained by our theory through the fact that
the LPD error € decreases with!? m. Similar conclusions can be drawn for
GMM modeling (Fig. 4.6b), albeit with a more significant impact related
to the dataset size, which makes the crossing described before easier to
observe.

4.5.4  Synthetic data: sensitivity of the sketch parameters*

As a last synthetic experiment, we visualize how quantizing the sketch
contributions impacts the choice of the sketching parameters, i.e., the sam-
pling pattern and scale ¢ generating the random projection (). Here, the
dataset generated by sampling n = 10° points from Py, a mixture of K =
5 Gaussians in dimension d = 10. We generate the random projection
Q (used to define both ¥ and ®) according to the various heuristics in-
troduced in [KBGP18], namely the Gaussian (G), Folded Gaussian (FG)
and Adapted Radius (AR) sampling strategies (we refer the reader to Sec-
tion 2.5 for their mathematical descriptions). Moreover, we let the sketch
scale parameter o (i.e., the scale of the associated kernel; decreasing ¢ in-
creases the "resolution" of the sketch operator) vary, and check how the
asymmetric (quantized) and symmetric CL schemes compare.

The results are shown Fig. 4.7. As could be expected, the range of ac-
ceptable sketch scales ¢ increase when the sketch size m increases. How-
ever, the crucial observation here is that in some cases, the choice of sketch

10Note that the LRIP constant 7y also should decrease with 7, but this same constant appears
in all the terms of the excess risk, so this effect should impact all the curves in the same way.
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scale o can be much more difficult when the contributions are quantized'!;
this is especially striking for the GMM task. The main takeaway is that,
to use quantized sketch contributions, special care should be put in the
choice of the scale parameter (which is already a difficult problem we’ll
come back to in a later chapter); otherwise a price in terms of increased
sketch size could have to be paid.

455 Real data: spectral clustering of MNIST digits

We now validate the ACL scheme on "real" (i.e., non-Gaussian) data. We
first consider k-means in the context of a spectral clustering [VL07] pipeline
of the MNIST dataset (70000 28 x 28 pixel images of handwritten dig-
its [LCB]). This experiment aims at detecting, in an unsupervised setting,
the 10 clusters corresponding to the digits 0 — 9 from their representation
in a 10-dimensional feature space'>. We run the compressive clustering
algorithms with m = 1000 frequencies. To avoid bad local minima, sev-
eral replicates of k-means are usually run and the solution that achieves
the best SSE is then selected. We thus also perform several replicates of
the compressive clustering variants, but since computing the SSE requires
access to whole dataset (which is not supposed available to the compres-
sive algorithms), we select the solution of that minimizes the related sketch
matching objective; see [KTTG17].

We use two performance metrics to assess the clustering algorithms:
the SSE (4.7), i.e., the k-means objective function, and the Adjusted Rand
Index (ARI) [VEB10] that compares the clusters (and not the centroids) pro-
duced by the different algorithms with the ground truth digits. A higher
ARI means the clusters are closer to the ground truth, with ARI = 1 if the
partitions are identical and ARI = 0 (on average) if the clusters are assigned
at random.

Fig. 4.8 reports the mean and standard deviation (excluding a few clear
outliers for CKM and QCKM, occuring about 5% of the time on average) ob-
tained for both performance metrics. Globally, QCKM performs similarly to
CKM, retaining its advantages over k-means. First, the compressive learning
algorithms are more stable: their performance exhibit small variance, in
contrast with k-means that hence benefits the most from several replicates.
In addition, while for several replicates k-means outperforms the compres-

' This could be interpreted as a consequence of the fact that quantized CL requires a larger
sketch size; in any case, this observation is not especially surprising, but still worth mention-
ing explicitly.

12We thank the authors of [KTTG17] for having shared this spectral clustering dataset.
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Fig. 4.8 Mean with standard deviation over 100 experiments of the per-
formance (SSE/n and ARI on left and right, respectively) of the different
compared clustering algorithms—k-means in blue, full-precision compres-
sive k-means (CKM) in yellow, quantized compressive learning (QCKM) in
green—both for 1 and 5 repetitions of each learning algorithm.

sive approaches in terms of SSE, the solutions of (Q) CKM are closer (as quan-
tified by the ARI score) to the ground truth labels: this suggests that the
sketch matching objectives (4.13) or (4.17) are better suited than the SSE for
(at least) this task. Note that QCKM performance have moderately higher
variance than those of CKM: this is probably due to the increased measure-
ment rate of QCKM required to reach similar performance (as suggested by
the first experiments) while here both algorithms ran with m = 1000.

4.5.6 Real data: density fitting on Intel Lab sensor reading*

We now consider the GMM task. As illustration of our motivating example
in Fig. 4.1, we consider a scenario where quantized sketch contributions
could be especially beneficial: a sensor network where the sensor nodes
transmit the sketch contributions to a central compute unit. We use the In-
tel Lab dataset [BHG " 04] gathering n = 2.3 x 10° readings from a network
of 54 sensors. We focus on d = 5 attributes (time of the day, temperature,
humidity, light and voltage) which were normalized between 0 and 1 af-
ter clipping outliers. In our scenario, each sensor frequently—twice per
minute—obtains measurements x; € R>, and computes the related sketch
contribution (Prer(x;) or ¥, (x;)) locally. Those contributions are then sent
wirelessly to a central server which averages them all to construct the over-
all sketch: each sensor thus transmits messages of either b = 128m bits for
the full-precision case @ (x;) (assuming 64-bit floating-point precision),
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Fig. 4.9 Excess risk (log-likelihood deficit compared to ground-truth)
versus number of bits per contribution, for full-precision (blue) or quan-
tized (green) sketch contribution, on the Intel Lab dataset.

or b = 2m bits for the quantized contributions ¥, (x;). The central server
then learns a GMM from the resulting sketch, e.g., to discover fundamental
operating modes.

The resulting excess risk as a function of the required bitrate is shown
Fig. 4.9. We can see that the same performance can be reached with a much
smaller bandwidth usage thanks to quantized CL. Note that we did not
target a particular downstream application, but assumed one is interested
in a general modeling of the distribution of the sensor’s readings. In the
next experiment we tackle a more task-oriented application.

457 Real data: feature extraction for ESC-50 audio clips classification

As large-scale proof-of-concept, we tackle an audio event classification task,
where (A)CL is used to alleviate the computational cost of learning a GMM
in a feature extraction phase. Note that our goal is not to propose a par-
ticularly competitive audio classification scheme, but to compare the ACL
strategy to symmetric CL on large-scale, realistic data.

Our scheme follows the "alpha features" strategy described in [KR16].
We use the ESC-50 dataset [Pic15], which contains | = 2500 audio clips
lasting 5s, each associated to one of C = 50 classes (e.g., animals, water
sounds, urban noises). We assume that the J audio clips sU) are distributed
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across a sensor network, which perform local preprocessing as follows.
For each audio clip s\/), we extract'®> Mel Frequency Cepstral Coefficients
(MFCCQC), using d = 10 frequency bands, 30 ms-long time intervals, and

15 ms-long hops. We then take the (distorted) features ‘I’(xl(j )) (with ¥ to

be specified) of each of the N = [{25-] = 334 resulting MFCC vectors
)

xl(j € R%. Gathering features from the | audio clips, the n = JN resulting

contributions ‘I’(xf] )), each encoded by b bits (more on this below), are

aggregated, by a central server, into one sketch vector zy . AGMM of K =
32 modes, describing the distribution of all clips in the frequency domain,
is then extracted from this sketch by (A)CL. Each audioclip s'/) can then by
summarized by its "alpha features” !} € RX, defined by the average soft
assignement of that clip’s MFCC vectors to each of the K Gaussian modes,
ie.,

1w mry

w) = : .
k N /= o5 kaN'(xl(]);l‘k/rk)

Finally, a SVM (see Section 2.1.1) is learned on the alpha features to classify
the J audio samples; see [KR16] for additional details.

We train this classification scheme and evaluate it on a separate test set
(20% of the full dataset), for various values of the sketch dimension m. As-
suming a scenario where minimizing the transmission cost is crucial, we
compare the performance at given values of the number of bits b sent per
"message", i.e., per featurized MFCC vector ¥ (x;). For usual full-precision
RFF Y = ®ggr, we assume the real and imaginary numbers are encoded by
64 bits, i.e., b = 128m. For the quantized RFF Y = ¥, we have, by construc-
tion, b = 2m. As baseline, we also report the accuracy when Expectation-
Maximization (EM) is performed on the whole dataset to learn the GMM
("un-compressed learning").

The results are shown Fig. 4.10. In this specific scenario, the ACL scheme
with quantized contributions is particularly advantageous over the full-
precision symmetric CL scheme, as the same performance can be reached with
a bitrate reduction by a factor of at least 30. Moreover, when the sketch size is
large enough, both compressive learning approaches are competitive with
the EM baseline, which requires several passes over the entire database X'
Of course, this doesn’'t mean CL is necessarily the best candidate for the
scenario described here, as other approaches using e.g., distributed learn-

13The MFCC extraction used the librosa [MLM*20] package. The subsequent SVM model
is trained with scikit-learn [PVGT11].

154 |



Conclusion | 4.6

Test accuracy
o o o

=]

—_

[en)
!

0.05+

107! 10° 10!
Bits b per message in kilobytes [KB]

Fig. 4.10 Test accuracy of the GMM-based audio classification procedure
described in [KR16], as versus number of bits per contribution, for full-
precision (blue) or quantized (green) sketch contribution, and with plain
Expectation-Maximization (dashed black) on the ESC-50 dataset.

ing could be considered; recall that we focus here on the comparison be-
tween symmetric and asymmetric CL.

4.6 Conclusion

Motivated by the benefits promised by quantization of the sketch con-
tributions, in this chapter we defined the asymmetric compressive learn-
ing (ACL) scheme and formally established excess risk bounds for it. To
achieve this, we introduced a specific LPD property—telling us "how far" a
distorted feature map is from an undistorted one—that combines with the
classical LRIP of compressive learning to explain the ACL performance.
Our second key contribution was to apply this result (i.e., proving the LPD
property) to the specific case of random periodic features, which covers
quantized (and modulo) sketch contributions. We then further validated
this strategy with a series of numerical simulations.

However, our contribution focused on deriving an excess risk bound
without particular care for its tightness. In particular, using Lemma 4.13 to
prove the LPD requires to have a sketch size m scaling with the complexity
(Kolmogorov entropy) of a signal set X, which is not a required ingredient
in previous (symmetric) CL guarantees [GBKT17]; this could be subopti-
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mal if ¥ is large (in the Kolmogorov entropy sense); ideally, our results
would depend on the complexity of the model set G rather than the signal
space X.

Moreover, just as the existing CL guarantees, the excess risk bound is
not readily exploitable in practice. For instance, the LRIP constant and the
Kolmogorov entropy are hard to pin down accurately, and involve solving
non-trivial trade-offs to be interpreted properly (e.g., between the sketch
size m, the probability of failures, the error contributions €). As a last
caveat, let us recall that the current compressive learning algorithms used
in practice are heuristics that do not have convergence guarantees. Future
work is thus needed to bridge the gap between the theoretical guarantees
and empirical performance of compressive learning—symmetric or not.

Some additional perspectives/extensions are discussed in Chapter 7.
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Private Sketching

tain sensitive personal information (e.g., when working with medical

records, online surveys, or measurements coming from personal de-
vices) and data providers ask that individuals’ contributions to the dataset
remain private. Learning from such data collections while protecting the
privacy of individual contributors, i.e., privacy-preserving machine learning,
has thus become a crucial challenge [FWCY10, ARC19].

Intuitively, the goals of privacy-preserving machine learning and com-
pressive learning (which represents the entire data distribution by a sketch
vector of small size) seem to align: to extract the general statistics from the
dataset, while somehow "forgetting" the individual data points as much
as possible. This synergy lies at the core of this chapter, which presents
a privacy-protecting sketching mechanism, able to at the same time com-
press the dataset and provide formal privacy-preserving guarantees for its
contributors.

IN AN INCREASINGLY LARGE amount of applications, data samples con-

Specifically, we focus on Differential Privacy (DP), a particularly strong
and popular mathematical formalism to study the privacy of algorithms,
as explained in Section 5.1. We combine differential privacy with compres-
sive learning into a private sketching mechanism which is described and
theoretically studied in Section 5.2, and empirically validated against state-
of-the-art approaches in Section 5.3. Further advantages and challenges of
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private sketching are discussed in Section 5.4, before concluding in Sec-
tion 5.5.

This work is the result of a collaboration between myself and (at the
time) PhD students Antoine Chatalic (IRISA, Université de Rennes) and
Florimond Houssiau (Imperial College London), and our respective su-
pervisors: Laurent, Rémi Gribonval and Yves-Alexandre de Montjoye. We
published several works on this line of work: preliminary results (the main
private sketching mechanism and experiments on private k-means) where
presented at ICASSP [SCH"19a] and (with some new variations) at the
SPARS workshop [SCH " 19b]. We then further extended the analysis of this
scheme (among others, focusing on the sharpness of the guarantees) in a
journal paper which was accepted at Information and Inference [CSH™21].
Most of this chapter is heavily inspired by those publications (and a few
passages from their summary in [GCK"20]), with a specific focus on the
aspects I contributed to.

Remark 5.1. In particular, the experimental results on private k-means (i.e.,
Figures 5.2, 5.3 and 5.5) are to be credited to Antoine Chatalic. Some other
contributions that were mainly his work (such as sharpness guarantees,
the subsampling mechanism, the noise-to-signal ratio as proxy for utility,
and private compressive PCA) were left out of the current chapter.

5.1 Preliminaries: notions of differential privacy

5.1.1 Motivation

The amount of data collected has increased exponentially over the last two
decades. In parallel, data has become more fine-grained, from medical
records to GPS traces with a temporal resolution on the scale of seconds.
While this increased availability and precision of data have resulted in
tremendous advances, they raise serious privacy concerns. Such datasets
often contain highly detailed summaries of our lives, and are notoriously
hard to anonymize (data (pseudo-)anonymization is removal of personally
identifiable information from the dataset, which is the basis of GDPR regu-
lations for example [Eur]). Indeed, individuals have been shown to be eas-
ily re-identifiable in large-scale behavioral datasets, such as mobile phone
metadata [{MHVB13], credit card data [{MRS"15], web browsing behav-
ior [BZH06] and movie watching history [NS08]. One can then argue that
the dataset itself should thus not be disclosed. But publishing seemingly
harmless quantities computed from it—e.g., a machine learning model or
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aggregate statistics—can still compromise the privacy of these users, even
when these quantities result from aggregation over millions of data providers [DNO03].
This motivates the need for defining (and enforcing) a strong mathematical
quantification of privacy.

Differential privacy (DP) [Dwo08a] was introduced by Dwork et al. as
a precise mathematical property of algorithms that protect the privacy of
users in a dataset. As will become clearer below, it requires for a ran-
domized algorithm’s outputs to be distributed approximately identically
whether any one individual is in the dataset or not (i.e., the output depends
negligibly on the presence or absence of any individual). The discrepancy
between distributions is controlled by a parameter € known as the privacy
budget. DP is a particularly strong requirement, and is considered by many
as the gold standard definition for privacy loss in aggregated data releases.
It has been studied extensively in research and industry [EPK14,T17], and
in machine learning and signal processing in particular [SC13]. It been de-
ployed by companies with large user bases, such as Google to measure
changes in mobility patterns caused by confinement measures [ABC"20],
LinkedIn to answer analytics queries [KT18] or Apple to estimate Emoji
usage [TVV'17].

Alternative privacy definitions Although we focus on DP, many alter-
native definitions of privacy have been proposed in the literature [WE18].
Traditional statistical disclosure metrics, such as k—anonymity [Swe02],
define anonymity as a property of the data, e.g., requiring that each user is
indistinguishable from k — 1 others. However, as argued above, anonymiz-
ing large-scale high-dimensional data was shown to be hard, due to the
high uniqueness of users in such datasets. Researchers have also proposed
to make privacy a property of the algorithm, enforcing for instance that
the mutual information leakage is bounded [DJW14]. Differential privacy
is the most popular of such definitions, as it considers a worst-case adver-
sary, and is hence "future-proof": no future release of auxiliary informa-
tion can break the privacy guarantees. Connections between differential
privacy and other information-theoretic definitions have also been investi-
gated [WYZ16].

5.1.2 Differential Privacy

Randomness is an old tool for introducing uncertainty ("privacy by plau-
sible deniability") when using sensitive information, e.g. implemented as
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randomized response surveys [War65]. Differential privacy [Dwo08b] also
relies on this tool, and provides a formal definition of the privacy guaran-
tees offered by a randomized data release mechanism (e.g., a machine learn-
ing algorithm) M. Intuitively, a mechanism M provides differential pri-
vacy if its output does not depend significantly on the presence of any one
user in the database, hence hiding this presence from an adversary.

More specifically, DP states that the distribution of a differentially pri-
vate algorithm’s output is similar for any two neighboring datasets—typically,
if they differ by the addition or removal of any one record. The guarantees
of DP are characterized by a privacy "budget" € > 0 which bounds the
information disclosure from the dataset. Differential privacy is robust to
many forms of attack, such as when the adversary can access side informa-
tion that nullifies privacy guarantees based on anonymization or mutual
information measures (e.g., when the adversary can control some of the
data vectors x;, or can access additional databases that are correlated with
the primary database).

Definition of (pure) Differential Privacy DenotebyD = {X C RY, |X| <
co} the set of all possible datasets X', equipped with a neighboring relation
~. In this chapter!, we consider that two datasets are neighbors if they
differ by the addition or deletion by a single record, i.e.,

X~ & Fjst A =XU{x}or X =x"U{x}.
Denote by S the output space of the considered algorithm M : 1D — S.

Definition 5.2 (Differential Privacy). Given a neighboring relation ~ be-
tween datasets in ID, a randomized algorithm M is said to achieve dif-
ferential privacy with privacy parameter € (noted e—DP) if for any set of
possible outcomes S C S:

VX ~ X' €D, P[M(X) €S| <eEPIM(X') € S]. (.1)

In particular, this implies that if the random variable M (X) (resp. M (X))
has a probability density function pv¢(x)(s) (resp. pr¢(x)(s)), then for all

10ther neighboring relations exist in the DP litterature. In [CSH'21], we also considered
the "replacement" neighboring relation (which is called "Bounded" DP, as opposed to "Un-
bounded" DP considered in this chapter).
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Fig. 5.1 Differential privacy for our private sketching mechanism (i.e.,
M(-) = s(-) as described in (5.7)). Two neighboring datasets X ~ X"
(e.g., with and without the inclusion of one individual record x;) would
produce distinct (deterministic) sketches z(X) and z(X’). To guarantee
differential privacy, we thus add carefully calibrated noise on the sketch,
which then gives two random quantities s(X’) and s(X’). Differential
privacy ensures that an adversary (that potentially has knowledge of the
feature map ®) cannot distinguishing between those s(X') and s(X”), in
the sense that their likelihood ratio Ps(x) (%)

Poe ) is bounded by exp(e), ie.,
log(ps(x)(s)) —log(ps(ar)(s)) < e.

output valuess € S
(5) _
7S exp(€). (5.2)

Intuitively, differential privacy ensures that if two datasets are neigh-
bours, then their (random) output is almost indistinguishable, in the sense
that any outcome has almost the same probability to be observed—up to
an multiplicative term exp(e). The parameter € > 0, called the privacy
budget or privacy loss, characterizes the strength of the privacy guarantee.
As € becomes smaller, then the output distribution for any two neighbor-
ing datasets are required to be closer together, and the privacy guarantee
is thus stronger. Conversely, when € increases, the privacy guarantee be-
comes weaker (when € — oo, the algorithm is nonprivate). This is repre-
sented Fig. 5.1.

Remark 5.3 ("Bayesian" interpretation of DP). The condition (5.2) can be in-
terpreted as bounding a "likelihood ratio" [Poo13], a familiar quantity in
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signal processing. Consider two hypotheses: one that the dataset equals
X (e.g., contains x;), and the other that the dataset equals X" (e.g., doesn’t
contain x;). Then p (x)(s) would be the likelihood of observing an out-
put (e.g., a private sketch) s under the first hypothesis, while p (1) (s)
would be the same for the second hypothesis. Say an adversary wanted
to detect whether or not the dataset contains x;. By appropriately thresh-
olding the likelihood ratio p v¢(x)(s)/Pas(a)(s), one can obtain hypothe-
sis tests that are optimal from various perspectives (e.g., Bayes, minimax,
Neyman-Pearson) [Poo13, Ch. 2]. Thus, when (5.2) holds with small ¢, it is
fundamentally difficult for an adversary to determine whether x; or x was
present in the dataset. Even if the adversary had non-trivial prior knowl-
edge of the true hypothesis (as in so-called "linkage attacks," which make
use of a second public dataset to which the target user contributed), (5.2)
implies that—for any method—the probability of recovering the true hy-
pothesis from the output of M is only slightly higher than that which is
achievable without observing that output; see [WZ10]

Privacy-Utility tradeoff A common way to preserve privacy is to have
a trusted dataholder (or "curator") corrupt the response to each query of
the dataset [FWCY10] in a controlled manner (e.g., by noise addition, as
we will see in Subsection 5.1.3). A query may ask for something as simple
as counting the number of times a given event occurred, or it may ask for
more sophisticated information that requires the dataholder to run an in-
ference algorithm. As the distortion becomes more significant, the privacy
guarantee gets stronger (i.e., € decreases), but the quality of the response
to the query (called the utility) degrades. Privacy-preserving mechanisms
are thus characterized by a privacy-utility tradeoff, which describes how the
utility evolves with respect to the privacy strength e [FWCY10,SC13].

Main properties of DP Differential privacy has several desirable prop-
erties. First, composition guarantees that accessing the same dataset with I
different mechanisms uses a total budget €;,s; = 21'121 €; that grows as the
sum of each sub-budget €; used.

Theorem 5.4 (Sequential composition). If M and M, are two mechanisms
that are respectively €1-DP and €,-DP, the composed mechanism Mc(X) =
(M1 (X), Mz()()) is (€1 + €2)-DP.

Remark 5.5. Composition is a "desirable" property in the sense that it makes
the analysis of compositions of mechanisms straightforward. However, on
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a pragmatic perspective, it also sets strong limits on the number of accu-
rate analyses that can be performed on a dataset. Indeed, if analysts want
to run I differentially private tasks over the data—or, typically, an itera-
tive algorithm that requires I iterations—and the total acceptable privacy
budget is set to €441, €ach task i has, on average, access to only €; = E’U—I"”
Since typical DP mechanisms add noise of variance scaling with eiz (see

Subsection 5.1.3), this often yields inaccurate results when I is high. l

Second, post-processing ensures that once some quantities have been
computed by a differentially private algorithm, no further operation on
these quantities can weaken the privacy guarantees (some form of "data
processing inequality"). The latter will be particularly relevant for private
sketching, as it implies that all information extracted from a differentially
private sketch are differentially private.

Theorem 5.6 (Post-processing). Let M an e-DP mechanism, and F : S — Y
any algorithm. Then F o M is e-DP.

Approximate Differential Privacy Differential privacy is a very strong
guarantee, and for many real-world tasks it can lead to severe degradations
of the algorithms performance (utility) for small privacy budgets. For this
reason, many relaxations? of DP have been introduced, the most prominent
of which is approximate differential privacy (ADP) , also commonly called
(e,6)-DP [DMNS]. This definition introduces a tolerance § > 0 to vi-
olations of the € bound on output probabilities (also called catastrophic
events).

Definition 5.7 (Approximate Differential Privacy). Given a neighboring
relation ~ between datasets in ID, a randomized algorithm M is said to
achieve approximate differential privacy with privacy parameters €, J (noted
(€,0)-DP) if for any set of possible outcomes S C S:

VX ~ X' €D, PIM(X) € 5] < eEPM(X) €8] +46.  (53)

The composition and post-processing properties of e-DP carry over to
(€,0)-DP; in particular, the composition of (e1,d1)- and (e, )-DP mech-
anism is (€1 + €,01 + 07)-DP, although tighter composition theorems ex-
ist [KOV17]. The post-processing theorem holds as well for (¢, 6)-DP.

2As a side note, over 200 different variants of differential privacy have been pro-
posed [DP19]; we focus here on the—by far—most common one.
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5.1.3 DP building blocks

We now review the standard tools to achieve differential privacy.

The Laplace mechanism The most common and simple method to com-
pute a function f over a dataset with e-DP is the so-called Laplace mech-
anism [DMNS]. For a target function f : ID — IR™ of a dataset, this
mechanism adds centered Laplace noise with scale proportional to the L!-
sensitivity Aq(f) of f, which measures the maximum variation of a f be-
tween two neighboring datasets.

Definition 5.8 (L!-sensitivity). The L!-sensitivity of a function f : D — R™
for a neighborhood relation ~ is defined as

M(f) :=supy_y I f(X) - f(X)h- (5.4)

This definition extends to complex-valued functions by the canonical iso-
morphism between C” and R*".

Definition 5.9 (Laplace Mechanism). The Laplace mechanism to estimate
privately a function f : D — R™ is defined as the addition of centered
Laplace noise® v. This mechanism achieves e-DP provided the Laplace

A (f)

€

noise distribution has scale parameter g = ,ie.,

./\/lf(X) = f(X)+v where vj~jjq L(B),j=1,., m.

We can extend the Laplace mechanism to complex-valued functions: the
complex Laplace mechanism to compute a function f : ID — CK is defined
as the addition of complex centered Laplace noise* with scale parameter

B= AlT(f) (where A1 (f) is the complex-valued sensitivity.)
MEE(X) = f(X) +v where vj~iia Le(B) = L(B) +iL(B).

For completeness, let us shortly mention that besides the Laplace mech-
anism, another popular mechanism to achieve e-DP is the exponential mech-
anism [MT07], that randomly selects one output at random among a finite

3 A random variable v that follows the centered Laplace distribution v ~ £(8) with scale
B has probability density function p, (v) = ﬁ exp(— %‘) Its variance is 02 = 282

“We say that a complex random variable follows the complex Laplace distribution with
scale B, v ~ L¢(B), if its real and imaginary part follow independently a real Laplace dis-

tribution of parameter B. v admits a probability density function p, (v) o exp(— W),

and has variance ¢ = E |v|? = 482.

166 |



Preliminaries: notions of differential privacy | 5.1

number of candidates; this mechanism is thus better suited to tasks where the
output is not a numerical value. To ensure that the selected candidate is a
good one, the sampling is biased towards candidates that have a higher
"score" (to be defined by the application); while to ensure privacy, the im-
portance of this bias decreases when € does.

The Gaussian mechanism The Laplace mechanism is quite straightfor-
ward, but for many functions f, the L!-sensitivity can be large, leading to a
strong degradation of the utility. This motivates the relaxation to the more
permissive requirement of (€, d)-DP.

Similarly to the Laplace mechanism, the Gaussian mechanism is a com-
mon and simple method to achieve (e(6), 5)-DP, for a curve of values €(J)
parametrized by &, by simple noise addition. It scales with the L2-sensitivity,
which is analogous to the L!-sensitivity, but with the advantage that it is
often smaller.

Definition 5.10 (L?-sensitivity). The L2-sensitivity of a function f : D —
R™ for a neighborhood relation ~ is defined as

Bo(f) i= sup e [1F(X) = F(XT)]|2- (5.5)
This definition extends to complex-valued functions by the canonical iso-
morphism between C” and R*".

Definition 5.11 (Gaussian Mechanism). The Gaussian mechanism to esti-
mate privately a function f : D — R" is defined as the addition of Gaus-
sian noise v with variance 02, ie.,

M]gc(X) = f(X)+v where v;~jiq N(O, o), ji=1,.,m.

Similarly, we define the complex Laplace mechanism to compute a function
f : D — C™ as the addition of complex Gaussian noise® v with (per-
component) variance o

MEE(X) = f(X)+v where vj~iiq Ne(0,6%) = N(0,0%) +iN(0,07).

This mechanism was originally shown [DR, Appendix A] to guarantee
(¢,6)-DP provided o > 1/2log(122) AZT(f). This bound is commonly used

SThat is, v ~ N (0,0?) if its real and imaginary part follow independently a real normal
distribution of variance 02 each. The overall variance of this complex random variable is
02 =E |v|*> = 202
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but not sharp, especially in the high privacy regime (i.e. small €), and
restricted to € < 1. Balle et al. recently proved [BW18] a tight bound on the
noise level needed to guarantee a choice of (¢, ).

Theorem 5.12 (Theorem 9, [BW18]). For any €, > 0, the smallest noise level
o such that the Gaussian mechanism satisfies (€, 5)-DP is given by

Do (f)

c=u(ed)—=

V2e '’
where «(€,6) is a numerical algorithmic procedure given in [BIW18].

The noise level ¢ thus scales with the A, (f) sensitivity. Note that the
term & (e, §) depends on €, hence it is incorrect to say that o scales in e ~1/2.
In particular, when e — 0, the noise level converges to a finite constant [BW18,
Section 2.1].

In our private sketches, we rely on the classical Laplace and Gaussian
mechanisms. Before describing our approach however, we complete our
tour of differential privacy by reviewing related works.

5.1.4 Related Work

We focus on the two learning tasks considered in this chapter: Gaussian
modeling (GMM) and k-means clustering. The latter has already received
a lot of attention in the differential privacy literature, while the former has
been less studied.

As we saw, addition of noise is the most common way to achieve differ-
ential privacy, whether it is on the intermediate steps of an iterative algo-
rithm or directly on the output. Private variants of standard iterative meth-
ods include DPLloyd for k-means [BDMNO5], and variants with improved
convergence guarantees [LS19]. The popular k-means++ seeding method
has also been generalized to a private framework [NCBN16]. For Gaus-
sian modeling, DP-GMM [WWP*16] and DP-EM [PFCW16] have been
proposed. Note that for iterative algorithms, the privacy budget needs
to be split between iterations, de facto limiting the total number of iterates
I, which becomes a hyper-parameter (see Remark 5.5). Our approach does
not suffer from this drawback since the sketch is released at once. More-
over, the same sketch can be used to run the learning algorithm multiple
times with e.g., different initializations.

Releasing a private synopsis of the data (similarly to our sketch) rather
than directly a noisy solution has already been studied as well. For exam-

168 |



Preliminaries: notions of differential privacy | 5.1

ple, EUGKM [QYL13,SCL*16] suggests to use noisy histograms for cluster-
ing (but this method is by nature limited to small dimensions), and private
coresets have been investigated by Feldman et al. [FFKN09, FXZR17].

The exponential mechanism is another standard noise-additive approach
for privacy. A random perturbation is drawn according to a distribution
calibrated using a user-defined quality measure, and added to the output.
It has been used with genetic algorithms for k-means [ZXY " 13]. Such algo-
rithms depend strongly on the quality measure of the output, which must
be chosen carefully. Our sketch-based approach is in contrast more generic:
the same sketch allows to solve different tasks such as clustering and GMM
fitting, and it can easily be extended to new sketches in the future. Alter-
natively, our mechanism can be seen as a straightforward instantiation of
the exponential mechanism, where the output (the sketch) is carefully de-
signed so that is makes sense to simply use the L! or L2 norms as quality
measures.

Our sketching mechanism makes use of random projections, which
have proven to be very useful to solve efficiently large-scale problems,
and induce as well a controlled loss of information which can be lever-
aged to derive privacy guarantees. Balcan et al. investigated the large-scale
high-dimensional clustering setting with an approach based on Johnson-
Lindenstrauss dimensionality reduction [BDL"17]. Many other embed-
dings based on random projections have been proposed, see e.g. [KKMM13].
Linear compression of the number of samples (rather than reducing the di-
mension) has been considered [ZLW09] but is less scalable. Note however
that as explained in the next section, the features resulting from the random
projection undergo in our setting a nonlinear transformation, in the spirit of
random features [RR08], and are averaged; they thus differ a lot from what
is done in these works, although they share this common idea.

Private empirical risk minimization [CMS11, WYX17] has emerged as a
generic way to design private learning algorithms, but it relies on specific
assumptions (e.g. convexity, which does not hold for GMM modeling and
k-means) on the loss function which defines the learning task, and still
relies on multiple passes over the whole dataset.

Closer to our work, Balog et al. recently proposed to release kernel
mean embeddings [BTS17], either as sets of synthetic data points in the
input space or using feature maps, similarly to our method. However, to
the best of our knowledge, the impact of privacy on the quality of learning
in such methods has not been studied in the literature.

Some private sketching mechanism that precisely fall into our paradigm
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were very recently proposed, independently from (and after) our own de-
velopments. A private version of the RACE sketch (where @ are Locality
Sensitive Hashing maps, which can be loosely assimilated to the quantized
sketch we considered in Chapter 4) is presented in [CS20a]. In [HAP20], the
authors consider the same RFF-based private sketch as we did in this work,
but used it to train a generative network (using the technique described in
Section 6.2, also independently developed) to generate synthetic data that
can then be fed to standard machine learning methods.

5.2 Private Sketching Mechanism

Recall that in compressive learning [GBKT17] the sketch of a dataset A is
defined as the average of a feature map ®:

ZCID(xi) =: T (5.6)

where we define the "sum-of-features" function ¥ : D — C" : X —
1 ®(x;) for later use. For example, most of CL literature, as well as this
chapter, focuses on the random Fourier features map

O (x) = Pree () := exp(iQ " x),

which we consider here w.l.0.g. without \/m normalization for simplicity.
We first remark that sketching, as proposed in (5.6), is not sufficient per
se to ensure the differential privacy of user contributions, despite the fact
that the sketch itself (which is just at most m < nd complex numbers) can-
not contain much information about each of the n samples x; € R¥. In par-
ticular, although the vectors (wj);”zl are randomly generated, the sketching
mechanism induced by a given set of such vectors is deterministic. More-
over, we assume that the realization ®(-) of the random feature map is
publicly known (as the data analyst must know @ to learn from the sketch),
in contrast to other cryptography-based approaches like [TVBM19, RB13].

5.2.1 Generic approach

To ensure differential privacy, we thus construct a noisy sketch s(X’), by
perturbing the "clean sketch" z(X’) based on the Laplacian (resp. Gaussian)
mechanism, that guarantees e-differential privacy (resp. (e, J)-differential
privacy). First, note that from a learning perspective, instead of releasing
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the clean sketch z € C™ directly, we can very well release the numerator
and denominator separately, i.e., release (Lo (X), |X|) € C" x IN and the
fraction in 5.6 would then be computed by the data user before learning.
This decomposition of the fraction simplifies the analysis of the privacy-
preserving layer.

More specifically, our mechanism adds noise to the numerator and de-
nominator of (5.6) separately, i.e., it releases (X¢(X) + v, |X| 4 {) where
both v and { are random. Both quantities are thus made private provided
that the noise levels are properly chosen, as discussed in a moment. After
reconstruction of the fraction, the obtained "private sketch" is thus

S(X) - Z‘P(X)+V _ ?:1®(xi)+v.
X[ +¢ n+g

If the mechanism that releases (X¢(X) + v, |X| + () is differentially
private, then the private sketch (5.7) is private as well (by composition),
and so are all quantities that are learned from this sketch (by the post-
processing property). Note that this decomposition also allows to further
average several private sketches after computation in a distributed setting.
As another remark, since DP is robust to postprocessing, one could for
instance replace |X'| 4+ ¢ by max(|X| + ¢, 1) to avoid dividing by a null or
negative quantity. The noise v added to Xg(X') can be either Laplacian
or Gaussian depending on the desired privacy guarantee, as established in
the following subsection.

5.7)

5.2.2  Privacy of the mechanism

Pure e-DP sketch It can be shown using the composition theorem that
adding independent Laplace noises to the numerator and denominator of
equation (5.7) yields differential privacy.

Proposition 5.13. For any privacy parameter € > 0 and any privacy budget
allocation €1, €y > 0 such that €1 + €3 =€, if

A (®) := sup [|RP(x)1 + [[SP(x) 1
x€R?

is finite, then the private sketching mechanism (5.7) instantiated with noise

vj ~iid Lc(pr:= Ale(]@), and {~ L(B2:=Z),
is e-differentially private.
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Proof. By relying on the composition theorem (Thm. 5.4), it suffices to show
that M1 (&) = Zp(X) + v and My (X) := |X| + { are €1- and €,-DP,
respectively. Since M7 and M are instances of the Laplace mechanism
(Def. 5.9), it remains to prove that the L!-sensitivities of Z¢(X') and |X | are
given by A1(®) and 1, respectively. The latter is trivial (removing/adding
one sample changes the size of the dataset by one), so it remains to show

A () =supyy [[REo(X) — RE(X') |1 + [|STp (X) — SZop (X7) |1

sup vyt [IR(Lyex Pxi) = Lyexr Px) 1+ [S(-) [l
= sup, [|RO(x)[l1 + [SP(x)[l1 =: A1(P),

where x is the sample that is added /removed to obtain X’ from X'. O

To use this result in practice, we need to estimate the value of A1 (®P),
which we do now for random Fourier features ®ggy.

Lemma 5.14.

Ay (Prer) = sup,cga || RPrer (x) |1 + || SPrer (x) |1 < v2m.

Proof. We can decompose the objective as

A1 (Prer) = sup, 174 |cos(w]—»'—x)| + |sin(w]Tx)|.
Since sup; | cos(t)| + | sin(t)| = V2, a naive bound gives Aq (®ger) < v/2m.
U

In fact, a more sophisticated argument allows to show that in practice this
bound is sharp (i.e., we have a strict equality Ay (Prer) = V2m) [CSH*21].

Approximate (€,5)-DP sketch We can also apply the Gaussian mecha-
nism on the numerator® to obtain an Approximate DP sketch. As we will
see, the advantage is that the L?-sensitivity (and thus the required noise
level) of the RFF sketch scales as O(1/m), while we saw above that its L!-
sensitivity scales as O(m). In practical applications where m is of the order
of hundreds or thousands, the ADP relaxation is thus especially helpful.

®Note that we still add Laplacian noise on the dataset size |X|; if Gaussian noise was
added we would have to split not only € but also J between the sum of features and the
dataset size. As there is no difference between Aq(] - |) and A, (] - |), allocating a part of J to
the denominator would not bring any substantial gain compared to putting all this budget on
the numerator.
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Proposition 5.15. For any privacy parameters € > 0 and 6 > 0, for any privacy
budget allocation €1, €3 > 0 such that €1 + €3 = €, if

Ba(®) = sup 1/||RO(x)[3 + [ S(x) 3
xcR4

is finite, then the private sketching mechanism (5.7) instantiated with noise

vj ~iid Ne(0,02), and {~L(Br:=1),

€2

2 (D)
/2

Proof. Similarly to the pure DP case, we rely on the composition theorem”.
The only novel part is that we need to show that M (X)) := X (X) + v is
(€1,0)-DP, or equivalently, since we use the Gaussian mechanism, we need
to show that the L2-sensitivity of Y (X) is Ay(®). Recalling that, after
isomorphism of C to R2™ this sensitivity needs to bound

where 0 = w(eq,9) (see Thm. 5.12), is (€, 6)-differentially private.

sup /[ RE0(X) — REG(X) 3 + | S0 (X) — SEo (X1)|,
X~X!

we then proceed as in Prop. 5.13. O
We can again easily compute A, (®) for random Fourier features sketch.

Lemma 5.16.

Ao (Prer) = SUPycRa \/||§R¢RFF(9C)||% + || SCrer (%) |15 = v/
Proof. We can decompose the objective as
A3 (Prerr) = sup, Y Cosz(w]-Tx) + sinZ(w]-Tx) =m.
O

Remark 5.17. For conciseness, we presented here only the two most impor-
tant use-cases of our private sketching mechanism. In the extended pa-
per on this work [CSH'21], we derived guarantees that also hold for: the
quantized sketch contributions (discussed in Chapter 4), for the "replace"
neighboring relation ~ (BDP), for the quadratic random features used to

In particular, the composition of an (€7, §)-DP mechanism with an €;-DP mechanism, the
latter being an (€3, 0)-DP mechanism, is (€1 + €2,6)-DP.
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solve compressive PCA (see Section 2.5), as well when combined with a
subsampling mechanism that allows to reduce the computational burden,
(sometimes) without loss of privacy and utility. Moreover, whenever pos-
sible those guarantees were proven to be sharp (i.e., the sensitivity upper
bound is not loose). We refer the reader to [CSH'21, Table 1 and 2] for a
complete summary of the obtained guarantees.

5.2.3  Utility

Having established the differential privacy properties of our noisy sketch-
ing mechanisms, we are now naturally interested about its impact on the
utility of the sketch for subsequent learning. The straightforward and prag-
matic approach to study the privacy-utility tradeoffs achieved by our pri-
vate sketching, which is pursued in the next section, is simply by means of
numerical experiments.

However, there is a strong interest in being able to predict this util-
ity a priori. This would allow, in particular, to tune the different hyper-
parameters of the mechanism (e.g., how to split the privacy budget €1 + €2)
following a principled approach. Such a principle is crucial in practical
privacy-preserving machine learning, as, given a fixed target privacy level,
many choices of parameters are indeed possible, that can each yield a dif-
ferent utility value. Our goal is to pick the best choice of parameters (or
at least a promising one), without accessing the data, because any parameter
tuning that relies on probing the dataset requires to allocate a significant
part of the privacy budget € for parameter tuning, which further decreases
the overall utility.

In the extended version of this work [CSH"21], such a predictor of
the utility is proposed and studied, which we only briefly mention here.
Specifically, this predictor is a proxy comprising of a noise-to-signal ratio
(NSR) and the sketch size m. Given some reference sketch z, that will typ-
ically be the clean empirical sketch of X, z(X'), or the "true" sketch A(Pp)
of the assumed underlying distribution P, the noise-to-signal ratio is de-
fined as

Is(X) —=|3

NSR :=
12113

It can be observed [CSH™21] that, at least for the k-means task, com-
pressive learning from the noisy sketch s(X') is successful as soon as

1. The sketch size is large enough for the given task, m > mp;,. This
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requirement is not related to privacy, but the usual condition on the
number of measurements (see Section 2.5); for k-means for instance,
Mmin =2 2kd.

2. The NSR does not exceed a critical threshold which grows with m, i.e.,
NSR < NSRpax (). For k-means, we have for instance NSRpax (1) =~

_m
103kd *

One possible approach to tune the hyperparameters® of the private
sketching mechanism (without access to the data), is thus to (i) obtain an
analytical expression of the relationship between NSR and the different
hyper-parameters, (ii) fix a sketch size m, for example slightly larger than
Mmin, and (iii) to select the hyper-parameters that minimize the NSR ex-
pression. This approach is further detailed in [CSH"21].

5.3 Experiments

We now evaluate experimentally the privacy-utility trade-off for the two
standard tasks in compressive learning, namely k-means and Gaussian
mixture modeling, and compare to existing literature. We use the acronyms
CKM (here implemented in Julia) and CGMM (using pycle, see App. B) for
our compressive methods. Experiments on PCA can be found in [Cha20].

5.3.1 K-means clustering

Synthetic data We first consider synthetic data drawn according to a mix-
ture of k multivariate normal distributions Py = % Zf:l N (u;, 1), where
(M) 1<i<k ~ N(0, (sk*/#)21,). The parameter s controls the separation be-
tween Gaussians, which we set to s = 2.5 to get separated clusters. The RFF
frequencies are drawn according to a Gaussian distribution with variance
0% = 10(sk’/#)2. Figure 5.2 shows the tradeoff obtained between utility
and privacy on such a synthetic dataset, using d = 10, k = 10 (both for
generating the data and k-means), and n = 107. Utility is measured using
the SSE (2.23). We include results for different sketch sizes, with (r=1) and
without (r=m) subsampling’, using both standard and quantized Fourier

8We come back in more detail to the difficulty of chosing those parameters in Section 5.4.

9This approach, explained in [CSH*21], consists in computing only r < m features per
sketch contribution (or equivalently, to "mask" m — r of the sketch contributions, selected at
random, of each data contributor). Note that, after proper re-scaling, this does not yield any
benefit from the point of view of the privacy-utility curve (as can be seen from the figure); it’s
purpose is to potentially speed-up the sketch computation. We do not focus on this here.
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Fig. 5.2 Privacy-utility tradeoff on synthetic data for e-DP. Improved ini-
tialization for DPLloyd refers to the approach proposed in [SCL*16]. Pa-
rameters: k = d = 10, n = 107. Medians over 100 trials. The r parameter,
of little importance in this report, is the subsampling parameter explained
in footnote 9.

features (see Chapter 4). We also compare to DPLloyd [BDMNO05], and a
variant of DPLloyd with improved initialization [SCL™16]. These iterative
methods suffer from their fixed number of iterations, even for large values
of €, whereas our approach does not add any noise in this setting, and thus
yields better results for well-chosen sketch sizes. We observe that quantiza-
tion degrades slightly the performance (this is actually remedied at larger
sketch sizes, as explained in Chapter 4), but subsampling with only one
frequency per sample has no significant effect on the results in this setting.
On the right of Fig 5.2, one can see that using a large sketch size yieds worse
results in the high-privacy regime, but slightly better asympotes when € is
small, as one captures more information (in the nonprivate setting, a larger
sketch size is always better).

Real data We provide clustering results for two real datasets, Gowalla'"
which consists in n = 6,442,892 spatial locations in dimension d = 2, and
FMA!! [DBVB16], a dataset for music analysis. In the latter case, we only
consider the MFCC attributes, yielding n = 106, 574 features in dimension
d = 20. We compare our results with EUGKM [SCL " 16] on Gowalla, as this
methods relies on histograms and is only appropriate in small dimension,
and with PrivGene [ZXY"13] but only for FMA as this method does not
scale well.

We use for CKM (unquantized) RFF to construct a sketch size of m =

Onttps://snap.stanford.edu/data/loc-gowalla.html
Uhttps://github.com/mdeff/fma
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Fig. 5.3 Privacy-utility tradeoff on Gowalla and FMA (MFCC features
only) datasets. Medians over 200 trials, except for privgene which is too
slow.

4kd, where the random frequencies are drawn w.r.t. a Gaussian distribu-
tions with covariances ¢? where ¢ = 1/310 for Gowalla and ¢? = 1/2500
for FMA. The results are shown Fig. 5.3. Our approach achieves perfor-
mance that are always better than DPLloyd and EUGKM. PrivGene yields
slightly better results for small values of €, but produces very degraded
centroids even for higher values of €, and moreover scales poorly with the
number of samples 7.

5.3.2  Gaussian Mixtures Modeling*

To solve the Gaussian Mixture Modeling task from the noisy sketch, we
used CL-OMPR adapted for mixtures of Gaussians estimation [KBGP18],
denoted as CGMM below. Note that currently CGMM is limited to mix-
tures of Gaussians that have diagonal covariance (although non-diagonal
covariances could be considered in future works). In the existing literature,
differentially private estimation of GMM (with unknown, anisotropic co-
variances, unlike e.g., in [NRS]) has been marginally studied. The main—
and, to the best of our knowledge, only—existing technique is to adapt the
classical expectation-maximization (EM) algorithm by adding noise on all
computed quantities (the weight, mean and covariance of every Gaussian)
at each iteration. We implemented both the "DP-EM" [PFCW16] and the
"DP-GMM" methods [WWP*16] that follow this idea. However, we did
not include the poor performance that were obtained by DP-GMM, which
required systematically higher noise variance at each iteration ; moreover,
its privacy guarantee relies on a separation assumption that is difficult to
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control in practice. Several variants of DP-EM have been proposed corre-
sponding to different allocations of the budget for each iteration; here we
focused on the allocation that showed the best experimental performance,
referred to as "zCDP-GGG" in the original paper. For a fair comparison we
selected the approximate differential privacy setting, as it is the one consid-
ered in DP-EM. Since we use the improved Gaussian mechanism [BW18]
in our noisy sketch mechanism, we also implemented this improvement
in the different calls to the Gaussian mechanism made at each iteration by
DP-EM.

Synthetic data We first generated samples from an artificially generated
Gaussian mixture model Py = Z{il a;N (p;,%Z;). The mixture weights are
sampled from a uniform distribution &; ~ #/([0.01,1]) and then normal-
ized to sum to one. The means of the Gaussians are generated from y,; ~
N(0,25/d1,), and the covariances are diagonal matrices ¥; = diag(c;)
generated as (o7;); ~ U([s;/2,3s;/2]) for every i, where s; is a scale parame-
ter different for each Gaussian, generated as s; ~ ¢/ ([0.05/ dt/2,095/d1/ 2] ).
We instantiated this mixture for K = 6 and d = 8, then sampled n = 10°
samples from it to generate the dataset. We fixed § = 10~ for this experi-
ment, and fixed the per-iteration budget §; = 10~? in the zCDP allocation
for DP-EM, with I = 5 or I = 10 total iterations.

Real data Following DP-EM, we ran experiments on the ds1.10 Lifesci
dataset'?, a dataset containing the d = 10 principal component analysis
features from n = 26,733 biological and chemical experiments, with K = 3.
For this experiment, we fixed 6 = 10~° (thus ensuring 6 < 1/n, a require-
ment to get meaningful privacy guarantees), and we set §; = 1078 for the
DP-EM iterations.

Both datasets have been normalized to fit in the unit ¢,-ball'3. In both
cases, we sampled the random frequencies of CGMMs sketch according to
the “folded Gaussian” heuristic [KBGP18] with scale ¢ = 10~3. The ob-
tained privacy-utility curves are shown in Fig. 5.4. First, note that our per-
formance for DP-EM don’t match the results from [PECW16]: below some
critical value of €, our implementation systematically fails to find any sen-
sible solution. We observed that this happens when one of the weights

12Previously available at http: //komarix.org/ac/ds/, however the website seems down.
I did not find it elsewhere online since.
13This is required by DP-EM.
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Fig. 5.4 Privacy-utility tradeoff for differentially private GMM estima-
tion on synthetic (left) and real (right) data. Medians over 50 trials.

becomes negligible «; ~ 0, often due to noise addition on it. The com-
puted sensitivities of u; and X; are proportional to oci_l, so the estimated
parameters of the i—th Gaussian will be very noisy in consequence. Be-
cause those noisy parameters most often lie far away from any actual data
samples, EM is very likely to assign a; ~ 0 during the next iteration (even
before noise addition), causing even more noise to be added on the already
noisy parameters, and the i—th Gaussian becomes lost in this vicious cir-
cle. It is unclear if this behavior is due to a misinterpretation in our imple-
mentation, or there is some unreported post-processing in the experiments
from [PFCW16] to avoid this bad behavior. It is important to keep in mind
that the DP-EM performance should thus be taken with a grain of salt.

On both datasets, CGMM performs much better in the high-privacy set-
ting (i.e. low €), reaching a plateau rapidly (even compared to the curves
from [PFCW16] that we were not able to reproduce). Compared to the clus-
tering results above (where 6 = 0), increasing m always led to improved
results for the values we tried (this is further discussed below), saturating
at m = 25kd, which is the reason why we included only this curve. On the
synthetic dataset, which features diagonal-covariance Gaussians, CGMM
reaches the same log-likelihood as the ground truth density, while on the
lifesci dataset, CGMM saturates below the log-likelihood reached by the
nonprivate EM algorithm. This is probably due to the diagonal covariance
limitation of the CGMM implementation. Note that when the privacy con-
straints are stringent, it is better to limit the number of iterations of DP-EM.
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5.4 Discussion

In addition to being a promising privacy-inducing mechanism (i.e., in terms
of privacy-utility curves), our framework has several key interesting fea-
tures compared to other methods from the literature; we discuss them here,
together with main limitations and perspectives.

5.4.1 Desirable properties of private sketching

Efficient and distributed private learning Firstly, the computational ad-
vantages of non-private sketching [GBKT17] remain valid after our addi-
tion of a privacy layer. In particular, learning from the sketch can be done
with time and space complexities which do not depend on the number of
samples 7 in the dataset. Moreover, the sketching process is embarassingly
parallel due to the averaging operation. Sketches coming from several sep-
arate data holders can thus be aggregated again after sketching, providing
distributed differential privacy without any additional protocol or trusted
central party (which is in general not easy to achieve).

Private sketches as versatile, re-usable data summaries Another advan-
tage is that the sketch, acting as a surrogate for the whole dataset, contains
more information than just the output of one specialized algorithm, and
can thus be used multiple times. This can be leveraged to solve differ-
ent learning tasks from a same sketch without breaking privacy, assuming
that those tasks can be solved using the same sketching operator [GBKT17].
This is what we already observed for random Fourier features, which can
be used for both k-means clustering and fitting a Gaussian mixture model,
two different but related estimation problems.

This potential versatility of the sketch also allows to run the learning
algorithm with different initializations and parameters, producing multi-
ple solutions; the distance to the empirical sketch can be used as a metric to
pick the best of these solutions. This is in contrast with usual (e.g. iterative)
differentially private methods that can be highly sensitive to the choice of
such parameters (which have to be selected a priori, as accessing the data
for parameter tuning breaks the privacy guarantee). Of course the devil
is in the details, and further research is needed to investigate to what ex-
tent it is possible to choose parameters such as the sketch dimension or the
“scale parameter” of random Fourier features (see below) so as to combine
privacy, utility and versatility. Preliminary investigations indicate that one
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Fig. 5.5 Performance of differentially private compressive k-means as a
function of m for § = 0 (top) and § = 108 (bottom), n = 10%,10°,10° and
different values of €. Medians over 200 trials. Synthetic data, k = 4,d = 8.

can find sketch sizes resulting in good utility for both compressive gaus-
sian mixture modeling and compressive k-means with 6 = 1078 and e
above or equal to 1071

5.4.2 Open challenges: a priori sketch design

Although the sketch serves as a general-purpose synopsis of the dataset,
at least some a priori knowledge about the data distribution and/or the
target task is required when designing the sketch feature map ® and other
hyper-parameters of our method, as already mentioned in Subsec. 5.2.3.

Sketch size Because the noise level depends on the sketch size m, the
design of a sketching procedure becomes delicate since overestimating m
decreases the performance, unlike in the non-private case where increas-
ing m usually only helps. As an illustration of this fact, consider the nu-
merical experiment represented Fig. 5.5 (top row), where we estimate the
relative SSE (RSSE)'# achieved by compressive k-means (CKM) from the
€-DP sketch as a function of its size m.

As expected, in the non-private setting the SSE decreases monotonically

4The relative SSE is the ratio between the SSE obtained by the considered method, and that
of Lloyd’s standard kmeans algorithm, which is not private nor compressive.
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with m. However, when € < oo and 7 is moderate, increasing m (and thus
the noise, which is proportional to m according to Lemma 5.14) results in a
worse SSE at some point. This phenomenon is more pronounced when the
privacy constraints are higher, i.e. a smaller € induces a smaller range of
"optimal" values for the sketch size. There is thus a trade-off to make be-
tween revealing enough information for CKM to succeed (m large enough)
and not revealing too much information, such that the noise needed to en-
sure the privacy guarantee is not too penalizing, this trade-off being more
difficult in the high privacy regime. As explained in [CSH*21], this can be
understood with the NSR criterion, which can thus guide the choice of the
sketch size.

As shown on Fig. 5.5 (bottom), relaxing the privacy constraint to allow
6 > 0 mitigates the impact of m on the noise to add (recall from theo-
rem 5.16 that the noise is then proportional to \/m instead of m), even for
smaller values of n. This relaxation has the clear advantage of improving
the utility for similar values of n and € even for small §, and also facilitates
the choice of m, as good utilities can be reached on a wider range of sketch
sizes.

Sketch scale Another crucial point is the choice of the frequencies dis-
tribution (i.e., the distribution that generates 3). Even when the general
shape of the frequency distribution is selected and only a single scale pa-
rameter ¢ has to be pinned down (¢ essentially controls the scale at which
we can detect individual clusters), estimating an appropriate value for it is
not straightforward. This might be a limitation to using sketching in prac-
tice but, on the other hand, any heuristic that could be developed in the
future to estimate ¢ should be easy to make private as it releases a single
scalar value.

5.5 Conclusion

We have proposed and analyzed a sketching mechanism that is able to
guarantee the differential privacy of the data contributors. Intuitively, our
approach takes advantage of the synergy between compressive learning
(which aims at solving a given task from only a small sketch vector as
opposed to the entire data distribution) and the need in privacy-preserving
machine learning to reveal as little information as possible while still being
able to solve a given task.
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Numerical experiments suggest that, for k-means and GMM, this ap-
proach competes favorably with state-of-the-art alternatives. We expect
that compressive learning will be extended to more learning tasks in fu-
ture works (some possibilities will be explored in the next chapter); the
private sketching framework presented here would be directly transfer-
able to those new algorithms, although the sketch sensitivity would have
to be re-computed for novel feature functions ®. The true potential of pri-
vate sketching will depend on how well the general field of compressive
learning will be able to answer this challenge in the coming years. Those
perspectives are further discussed in Chapter 7.
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tasks; e.g., we mainly focused on k-means and GMM in Chapters 4

and 5, although a few other tasks (PCA, ICA, ..) were discussed
in Section 2.5. There is thus a strong interest in being able to extend this
framework to novel tasks. This chapter presents two proof-of-concepts of
such extensions—namely, for classification and generative network fitting—
as well as a generic compressive learning "debugging" methodology, po-
tentially useful to the research of any compressive learning method.

SO FAR, compressive learning is restricted to a rather limited set of

Remark 6.1. Note that the extensions presented here are tentative (not ma-
ture), and have in particular been mainly validated only on toy example
datasets. After some hesitation, those contributions were still added to
this thesis manuscript for the two following reasons: (i) they can serve as
baseline and / or starting point for more advanced CL methods, and (i) they
serve as support to discuss some of their limitations, which prevented us from
going further in their analysis. Both of those elements seem useful to make
progress in the field.

More specifically, Section 6.1 presents a compressive classification base-
line, built on the idea of constructing one sketch per class. It also quickly in-
troduces a sketch feature map ® based on random neural networks, which
is used to build a basic sketched image recognition scheme. This work was
presented at the iTWIST’18 workshop [S]18a].
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In Section 6.2, we discuss the possibility to compressively learn genera-
tive networks, by drawing a connection with a strategy known as MMD-
GAN [LSZ15]. It was presented at the ESANN"20 conference [S]20b].

Finally, in Section 6.3 we present a generic methodology to "debug"
compressive learning methods. Indeed, one difficulty in researching CL
is that, when a given scheme does not show empirical success, it is hard to
tell if this failure is to be blamed on the sketching phase (i.c., the choice of
the random features which are averaged), learning phase (i.e., the heuristic
algorithm that extracts parameters from this sketch), or if the problem is
simply not solvable in a compressive manner. The purpose of this prag-
matic method is to differentiate between those three situations, an insight
which should be useful for the design of any compressive learning scheme
(and in particular, when extending CL to new tasks). This work was pre-
sented at the iTWIST"20 workshop [S]20c].

6.1 Compressive Classification

So far, CL mainly focused on unsupervised ML tasks (cfr. Subsection 2.1.5),
where learning examples don’t belong to a (known) class. We propose a
simple baseline to extend CL to supervised ML tasks by proposing (in Sub-
sec. 6.1.2) and experimentally validating (in Subsec. 6.1.3) a first simple
compressive classification method using only a sketch of the labeled dataset
(Fig. 6.1). We also introduce a sketch feature function leveraging a ran-
dom convolutional neural network to better capture information in im-
ages. While not as accurate as ML methods learning from the full dataset,
this compressive classification scheme still attains nontrivial accuracy lev-
els considering its unlearned nature. Our method also enjoys a nice geomet-
ric interpretation, i.e., Maximum A Posteriori classification performed in
the Reproducible Kernel Hilbert Space associated with the sketch.

6.1.1 Preliminaries

(Unsupervised) Compressive Learning For convenience, we recall here
the notations and concepts from CL that will be relevant for this section.
Unsupervised ML usually amount to estimate parameters of a true data
distribution Py, from a dataset X' = {x; ~j;4 Po}/’ ; C R? of examples—
associated to an empirical distribution Py = % Yx,cx Ox;, with &, the Dirac
measure at u. In CL, a dataset sketch z y serves as a proxy for the true distri-
bution sketch A(Pp), where the map A is a linear embedding of the proba-
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bility distribution Py into the lower-dimensional space C™:
A(Py) := Exop, @(x) =~ zy:= A(73X) = %inex d(x;), (6.1)

where ® : RY — C™ is a (typically) random nonlinear feature map. This
map defines a positive definite kernel x(u,v) := E(®(u), P(v)), and «
in turn provides a Reproducible Kernel Hilbert Space (RKHS) H; to em-
bed distributions (see Subsec. 2.1.3). As can be understood in light of Sec-
tion 2.4, A indirectly maps P to its mean map x(-, P) = Eyop«(-,x) €
Hy [Aro50,5GSS07,5110]. Typical CL methods [KTTG17, KBGP18] use
Random Fourier Features [RR08] as map P, defined by

m
Pusr(x) = [oxplic] x)] T with @;~iia A 6:2)
The induced kernel « is then shift-invariant and the Fourier transform of
the distribution A, i.e., k(x,x') = «¥*(x — x’) := (FA)(x — x’) [Rud62]. CL
is promising because the sketch zy (ideally) retains sufficient information
to solve the task at hand whenever its size m exceeds some value inde-
pendent on the number of examples 1, yielding algorithms that scale well

when # increases.

Random Convolutional Neural Networks (CNN) = Shift-invariant kernels
are not that relevant when dealing with images: for example, they are sen-
sitive (more precisely, "not invariant") to simple image perturbations such
as translations, rotations, or re-scaling. Recent studies have shown that
the last layer of a randomly weighted (convolutional) neural network CNN
(combining convolutions with random weights, nonlinear activations, and
pooling operations) captures surprisingly meaningful image features [CS09,
GSB16,RT19]. We thus propose to use the feature map ®cyy(x) = CNN(x) €
R™ as sketch map ® for images. The associated kernel « is (for a fully con-
nected network) an arc-cosine kernel, that surpasses shift-invariant kernels
for solving image classification tasks with kernel methods [CS09].

6.1.2 Compressive learning classification

Our scheme (Fig. 6.1) consists of two sequential stages.

Observation phase Supervised classification infers a mathematical model
from a labeled dataset X' := {(x;,y;)}"_, where each signal x; € RY be-
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Fig. 6.1 Observation phase: we summarize the dataset X as the K class
sketches zy : the class average of non-linear maps zy, = ®(x;) of the ex-
amples x;. Classification phase: a new sample x’ gets assigned to the class
label k* that maximizes the correlation between its sketch z,s and the stored
class sketches; this can be interpreted as MAP classification in a RKHS H.

longs to a class Cj (out of K different classes), as designated by its class label
y; € [K]. Denoting py := P(x € C;) = P(y = k), the signals are assumed
drawn from an unknown distribution P:

xXi ~iid P =Yooy prp(x[x € C) = i pPr(x), (6.3)

where Py(x) := p(x| x € Cy) is the probability density of x conditioned on
the class k. As illustrated in Fig. 6.1(top), our supervised compressive learning
framework considers that X" is not explicitly available but compressed as a
collection of K class sketches z y, defined as:

~

zx, = A(Px,) = 7 Lyex, P(x) where X:={x;[x; € C}. (64)
We can also require approximated a priori class probabilities py, e.g., Px =

“k if we count the class occurrences 1y = | X/, or setting an uniform prior
pr = + otherwise.

Classification phase Under (6.3), the optimal classifier (i.e., in the sense
that it minimizes the error probability) for a test example x’ is the Maxi-
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mum A Posteriori (MAP) estimator K*** := arg max; pyPx(x'); in practice,
Py is generally hard to estimate. In our CL framework, we classify x’ from
zy, and py only (Fig. 3.1, bottom): we acquire its sketch z,y = ®(x’) and
maximize the correlation with the class sketch weighted by py, i.e., we as-
sign to x’ the label

k* := argmaxy Py(zy, zx,) (6.5)

Note that this "Compressive Classifier" (CC) does not require parameter
tuning (the choice of ® being rather a hyper-parameter). Interestingly, un-
der a few approximations, this procedure can be seen as a MAP estimator
in the RKHS H,. Indeed, we first note that if m is large, the law of large
numbers (LLN) provides the kernel approximation:

(®(u), ®(v)) ~x(u,v), Yu,vec R (6.6)

Assuming ny, is also large, another use of the LLN gives the mean map ap-
proximation: we have both py =~ p; and (using the kernel approximation)

(Zu zx,) = %k Yxex (P(u), @(x;)) ~ %k e, k(1 x;)

~ Eyop, x(u,x) =: k(u,P;) VYuec R (6.7)

Consequently, plugging the kernel approximation (6.6) and mean map ap-
proximation (6.7) into (6.5), we have that

k* ~ argmax; pyx(x, Py). (6.8)

In other words, we replace Py in the MAP estimator by its Mean Map
K (-, Px)—its embedding in H,—such that CC computes a MAP estimation
inside the RKHS Hy. In all generality «(-, P¢) is not a probability density
function, but can be interpreted as a smoothing of P by convolution with
k*(u) := x(u,0) if « is a properly scaled shift-invariant kernel. Alterna-
tively, (6.8) can be seen as a Parzen-windows classifier—a nonparametric
Support Vector Machine (without weights learning)—evaluated compres-
sively thanks to the sketch [DH*73,SSB"02].

6.1.3 Experimental proof of concept

Synthetic datasets We build two datasets that are not linearly separa-
ble (Fig. 6.2 left), and sketch them using ® = ®ger with A ~ N(0, o 21 d)

_ u—o]?

557 ). Asshown

which corresponds to a Gaussian kernel x(u, v) = exp(
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Fig. 6.2 Left: synthetic 2-d datasets of n = 10* examples from K = 3
equiprobable classes, separated into 2/3 for "training" (observation phase)
and 1/3 for testing (classification phase). Right: testing accuracy (average
over 10 trials) of our compressive classification method for different values
of ¢ (noted var) and increasing m (solid), compared to MAP classification
(dashed).

Fig. 6.2 (right), the test accuracy of CC improves with m until reaching—
when the kernel approximation is good enough—a constant floor depend-
ing on the compatibility between x and P. Accuracy is almost optimal
when « is close to the constituents of P (e.g., 15t dataset, o = 0.1), but de-
grades when the kernel scale and/or shape mismatches the data clusters
(e.g., 1%t dataset, o = 10; or 2" dataset). CC thus reaches good accuracy
provided m is large enough (note that in our examples, this value might be
quite high) and « is well adapted to the task.

Standard datasets We also test CC on some well-known “real-life” datasets
from the UCI ML Repository [ANO7]. Table 6.1 compares the error rates of
CC and kernel SVM, a fully learned approach (see Section 2.1). Although
worse than SVM, CC is surprisingly accurate considering its compressive
nature, low computational cost (especially when m = 50), and the fact that
k is a standard, non-tuned kernel.
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n d K | SVM | m =50 m = 1000
2.00 6.51 +1.81 5.51+1.23
Iris 150 4 3
4.00 8.22 +3.25 6.18 +2.40
0.84 4.56 +£2.34 243+0.72
Wine 178 13 |3

1.69 13.75+4.09 | 8.19+1.29

3.67 7.00 £ 1.40 3.93+0.39
Breast cancer 569 30 | 2

213 9.22+2.33 6.23 +0.69

21.03 | 23.88+£4.37 | 23.11+1.05
Adult (3 attr.) | 30718 | 3 2

21.06 | 36.09+6.67 | 35.04 £1.63

Table 6.1 Standard datasets: train set (gray) and test set (black and bold)
average error rates + standard deviation (in %, 100 repetitions), for SVM
and CC with m € {50,1000}, and with o = 2 arbitrarily set (data re-scaled
inside [—1, +1]").

Image classification We also considerimage classification datasets: hand-
written digit recognition (MNIST) and vehicle/animal recognition (CIFAR-
10). Here, we use ® = ®cyy (the default architecture provided by [VLB18]
with random initialization), which yielded better accuracy than ®Pgpr (not
reported here). We compare this CC scheme with the same CNN archi-
tecture equipped with an additional classification layer, with all weights
learned in one pass over X (for a somewhat fair comparison). Again CC is
outperformed by the learned approach, but still achieves reasonable, non-
trivial accuracy (although the error rate is still relatively high on CIFAR-
10).

n d CNN m =250 m = 5000

60000 1.60 +0.12 1773 +£1.43 | 16.60 £+ 1.54
MNIST 28 x 28 x 1

10000 1.63 +£0.11 16.83 £1.39 | 15.80 +1.61

50000 39.084+1.48 | 71.76 21.85 | 72.83 +£2.00
CIFAR10 32x32x3

10000 4028 +1.36 | 71.12+1.72 | 72.02+1.85

Table 6.2 Image datasets: train (gray) and test (black, bold) average error
rates £ standard deviation (in %, 10 repetitions), for CNN and CC with
m € {250,5000}.
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6.1.4 Discussion

Our compressive classification method is quite simple, as it requires no train-
ing, but only to compute the class sketches (accumulated random nonlin-
ear features ®(-) of the learning examples). This classifier is also relatively
cheap to evaluate, and has an interesting interpretation: a MAP estima-
tor inside the RKHS H,c associated with the kernel x defined by ®. Our
preliminary experimental results are an encouraging proof of concept, but
indicate room for improvement if the mapping ® (and the associated ker-
nel x) are adapted to the true data distribution; for example, image clas-
sification accuracy improves when & is a random CNN (which defines a
shift-variant x).

However, this scheme presents crucial limitations, the main one being
that the choice of the feature map & (or equivalently, of the associated ker-
nel x) is quite difficult. Intuitively, ¥ should be such that the mean maps
k(-,Px) € Hy of different classes k are "well separated” (ideally, as much
separated as the initial, unknown densities Py). It is not at all obvious that
such a kernel even exists (and if this is not the case, this would severely
limit the performance of even the best possible CC scheme), let alone that
an efficient feature map ® (e.g., of low dimension m) can be tuned easily in
practice. Moreover, a last drawback is that the idea to have one sketch per
class can be costly as the number of classes grow, and is not generalizable
to the regression problem.

6.2 Compressive Learning of Generative Networks

Generative networks implicitly approximate complex densities from their
sampling with impressive accuracy. However, because of the enormous
scale of modern datasets, this training process is often computationally
expensive. In this section, we cast generative network training into the
framework of compressive learning, which has the potential to reduce the
computational burden on large-scale datasets. In particular, we propose a
cost function to guide the network’s parameters, which approximates the
Maximum Mean Discrepancy metric, but requires only this sketch, which
makes it time- and memory-efficient to optimize.

6.2.1 Motivation

Generative networks (GNs) received a significant amount of interest for their
ability to embed data-driven priors in general applications, ¢.g., for solving
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inverse problems such as super-resolution, deconvolution, inpainting, or
compressive sensing to name a few [B717, M"17,RC*17,L"18]. As fur-
ther explained in Subsection 6.2.2, GNs are deep neural networks (DNNs)
trained to generate samples that "mimic" those available in a given dataset.
By minimizing some well-crafted cost-function during the training stage,
these networks implicitly learn the probability distribution synthesizing
this dataset (more precisely, one minimizes a divergence between the em-
pirical probability distributions of the training and generated data; see Sec-
tion 2.4). Passing randomly generated low-dimensional inputs through to
the GN then generates new high-dimensional samples.

In generative adversarial networks (GANSs) this cost is dictated by a sec-
ond "discriminator" network that classifies real (training) and fake (gener-
ated) examples. The generative and the discriminator networks are learned
simultaneously in a two-player zero-sum game [G*14]. If the discrimina-
tor is perfectly trained, the cost function boils down to the Jensen-Shannon
divergence between the training data and generated data distributions.
While GANs are the golden standard, achieving the state-of-the-art for a
wide variety of tasks, they are notoriously hard to learn due to the need to
balance carefully the training of the two networks.

In contrast, MMD-GNs minimize the simpler Maximum Mean Discrep-
ancy (MMD) cost function [LSZ15,D"15], i.e., a "kernelized" distance mea-
suring the similarity of generated and real samples. Although training
MMD-GNs is conceptually simpler than GANs—we can resort to straight-
forward gradient descent-based solvers (e.g., stochastic gradient descent)—
its computational complexity scales poorly with large-scale datasets: each
iteration necessitates numerous (typically of the order of thousands) ac-
cesses to the whole dataset. This severely limits the practical use of MMD-
GNs, as argued in [AT17].

This work proposes and assesses the potential of sketching to "com-
pressively learn” such deep generative networks (MMD-GNs) with greatly
reduced computational cost (see Fig. 6.3). By defining a cost function and
practical learning scheme, our approach serves as a prototype for compres-
sively learning general generative models from sketches. The effectiveness
of this scheme is tested on toy examples.

6.2.2 Preliminaries

Given some space ¥ C RY, we assimilate any dataset X = {xi}r, C
2, with n samples to a discrete probability measure Py, i.e., an empirical
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Fig. 6.3 General overview of our approach. The moment matching of

MMD-GNs is replaced by sketching both & and the sampling Py. This
compressive learning approach of GNs (that we call CL-GN) is allowed by
relating the RFF frequency distribution A to the MMD kernel «.

estimate for the probability distribution Py generating X'. Said differently,
X; ~iid. Poand Py := ‘}—‘ Y1 Ox;, where 6. is the Dirac measure at ¢ € X.

Compressive Learning As usual, we find it useful to recall the concepts
from CL we will need. In this section, we focus on the sketch operator
induced by random Fourier features ®(x) := —= exp(iQ ' x), i.e.,

N

m
A(P) :=Eyp P(x) = ﬁ {lEpr exp (1w;—x>}j:1 ,
which embeds the probability measure P into the low-dimensional do-
main C". The matrix Q := (wq, -+ ,wy) € RA*™ g randomly gener-
ated by drawing m frequencies w; ~j;q4. A, where A = Fx* is the Fourier
transform of some shift-invariant kernel x(x, x') = x*(x — x’). For large val-
ues of n, we expect that sketch of the dataset z y approaches that of the data
distribution
A(Po) ~ zx = A(Px) = £ Ty ®(x;) € C™. (6.9)
Usually, CL aims at learning, from only the sketch zy, an approxima-
tion Py for the density Py, parametrized by 8 € ©. For example, 0 collects
the position of the K centroids for compressive K-means, and the weights,
centers and covariances of different Gaussians for compressive Gaussian
mixtures fitting. This is achieved by solving the following density fitting
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("sketch matching") problem:

0" € argmain |zx — A(P)|5 st. 6€O. (6.10)

For large values of m, the cost in (6.10) estimates a metric Dy between P X
and Py, called the Maximum Mean Discrepancy (MMD) [GBR"12], that is
kernelized by «, i.e., writing x(P, Q) := Eyp y~o x(x,y), the MMD reads

D2(P, Q) := k(P,P) + x(Q, Q) — 2x(P, Q). 6.11)

Using Bochner’s theorem, we can indeed rewrite (6.11) as

T T
iw. x iw y2
e —Eypye ’

IA(Px) = A(Po)l3 = 5 Tis | By,

LT i T2 ~
L plw x_]Eyw'Pgelw y’ :D%('PX,'PG). (6.12)

>~ ]Ew~A } ]EXNPX

Provided A is supported on R?, Dy (P, Q) = 0if and only if P = Q [ST10].
Thus, minimizing (6.10) accurately estimates Py from Py- if m is large
compared to the complexity of the model; e.g., in compressive K-means,
CL requires experimentally m = O(Kd) to learn the centroids of K clusters
in RY.

The non-convex sketch matching problem (6.10) is generally solved
with greedy heuristics (e.g., CL-OMPR [KBGP18]). As they require a closed-
form expression of A(Pg) and the Jacobian Vg.A(Pg), CL has so far be
limited to cases where Py is explicitly available and easy to manipulate.

Generative networks In order to generate realistic data samples, a gener-
ative network Gg+ : £, — X (which follows some DNN architecture) with
weights 8* € R% is trained as follows. Given some weights configuration
0 € ©, we compute the synthetic empirical distribution

Po = Go(Pz) = & LI Go(z1),
obtained by 7’ inputs Z = {zi}?/ ; randomly drawn in a low-dimensional
latent space ¥, C R” from a "simple" distribution P, e.g., z; ~iiq. N (0,1Ip).
By design, Py is related to sampling the pushforward distribution of P, by
Gp. The parameter 0* is then fit to the dataset, in order to ensure that 739* ~
Py. While several divergences have been proposed to quantify this objec-
tive, we focus here on minimizing the MMD metric D%(ﬁ;\g, 739) [LSZ15,
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D*15]. Using (6.11) and discarding constant terms, we get the MMD-GN
fitting problem:

0" = argming Y., ..c7%(Go(zi), Go(2))) — 2 Lxex,ze7 K (xi, Go(2)))-
(6.13)
Li et al. called this approach generative moment matching [Hal05] net-
works, as minimizing (6.11) amounts to matching all the (infinite) moments
of P and Q in the feature space associated to « (see Fig. 6.3).

If x is differentiable, gradient descent-based methods can be used to
solve (6.13), using back-propagation to compute the gradients of Gg. How-
ever, for n true samples and 1’ generated samples (or a batch-size), each
evaluation of D2(Py, Py) (and its gradient) requires O(nn’ + n'2) com-
putations. Training MMD-GNs, while conceptually simpler than training
GANSs, is much slower due to all the pairwise evaluations of the kernel
required at each iteration—especially for modern large-size datasets.

6.2.3 Compressive Learning of Generative Networks

In this work, given a dataset X', we propose to learn a generative network
Gp using only the sketch zy = A(Py) defined in (6.9) (see Fig. 6.3). For
this, given n’ samples Z = {z; ~ P;}" |, we solve a generative network
sketch matching problem that selects 0* = argming £(6; zy) with

L(0;2) = [|APx) = A(Go(P2)) ||y = l|z2 = 3 Tty @(Go (=)
(6.14)
From (6.12), we reach £(6;zy) ~ D2(Py,Go(Pz)) for large values of
m, as established from the link relating ¥ and A. Compared to the exact
MMD in (6.13), £(6; zy) is, however, much easier to optimize. Once the
dataset sketch zy has been pre-computed (in one single pass over X, pos-
sibly in parallel), we only need to compute .A(Gg(Py)) (i.e., by computing
n' contributions z; — ®(Gy(z;)) by feed-forward, before averaging them)
to compute the Euclidean distance between both quantities. In short, we
access X only once then discard it, and evaluating the cost has complexity
O(n'), i.e., potentially! much smaller than O(nn’ 4+ n'?), the complexity of
the exact MMD (6.13).

Equally importantly, the gradient V£ (6; zv) is easily computed. With

IDepending on the sketch size 1.
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the residual ¥ := zy — % Z?;l ®(Gg(z;)) and rH its conjugate transpose,

VoL(0;zy) = —2- L ¥, R[pH (220 L WGolzl)y] . (6.15)

|u:ge(zi)

Above, agiu) = ﬁdiag (') Q) is the m x d Jacobian matrix listing the
partial derivatives of the m sketch entries with respect to the d dimension
of u € ¥, which is evaluated at the generated samples Gg(z;). The last
term %&z") € R%% is computed by the back-propagation algorithm as
it contains the derivative of the network output Gg(z;) (for z; fixed) with
respect to the parameters 8 € R%. Algorithmically, the feature function ®
amounts to an extra layer on top of the GN, with fixed weights () and ac-
tivation f — exp(it). We can then plug those expressions in any gradient-
based optimisation solver?.

6.2.4 Experiments

For this preliminary work, we visually illustrate the soundness of minimiz-
ing (6.14) by considering three 2-D synthetic datasets made of n = 10° sam-
ples (see the top row of Fig. 6.4): (i) a 2-D spiral {(r;, ¢;) }}_;, with ¢; ~j;q.
U([0,27)) and r; ~j;q. 2% + N(0,02), (ii) a Gaussian mixture models of
6 Gaussians, and (iii) samples in a circle, i.e., ¢; ~ U([0,27)) and r; ~
R+ N(0,0?) for R and o; fixed. We learn a GN mapping 10—dimensional
random Gaussian vectors to IR?, passing through seven fully connected
hidden layers of 10 units each, activated by a Leaky ReLU function with
slope 0.2. For this simple illustration, we sketch all datasets to a sketch of
size m = n/10 = 10*. We found experimentally from a few trials that set-
ting A to a folded Gaussian distribution (see [KBGP18]) of scale ¢ = 1073
is appropriate to draw the m frequencies {w; }71:1 From those sketches,
we then trained our generators according to (6.14), using the keras frame-
work. We fixed the number of generated samples to n' = 10°, which we
split into mini-batches of n;, = 1000 samples when computing the gradient.

Fig. 6.4 compares the densities of generated samples and re-generated
samples after the training (from the known densities) through their 2-D
histograms. Note that while the datasets are simplistic, we restricted the
training time to a few minutes and, except for the frequency distribution,

2To boost the evaluations of (6.15), we can split Z into several minibatches Z; of size 1, <
n'; (6.15) is then replaced by successive minibatch gradients evaluated on the batches Z;,. As
reported for MMD-GNs [LSZ15, D" 15], this only works for sufficiently large 1y, e.g., n, =
1000 in Sec. 6.2.4.
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Fig. 6.4 Histograms (varying from white to black as the number of sam-
ples increases) of considered datasets (top) and 50000 generated samples,
after training from the sketch (bottom).

no hyper-parameter tuning was performed. Despite a few outliers and
missing probability masses, the visual proximity of the histograms proves
the capacity of our method to learn complex 2-D distributions.

6.2.5 Discussion

We proposed and tested a method that incorporates compressive learning
ideas into generative network training from the Maximum Mean Discrep-
ancy metric. When dealing with large-scale datasets, our approach is po-
tentially orders of magnitude faster than exact MMD-based learning.

However, to embrace higher-dimensional applications (e.g., for image
restorations or large scale inverse problems), future works will need to (i)
devise efficient techniques to adjust the kernel «x (i.e., the frequency distri-
bution A for RFF sketches, but other feature maps could also be consid-
ered) to the dataset X, and (ii) determine theoretically the required sketch
size m in function of the dataset distribution Py. As already mentioned
in the discussion of the previous section, it is not fully clear how to deal
with the problem of sketching high-dimensional distributions such as col-
lections of images. As for the required sketch size, this problem certainly
relates to measuring the “complexity” of the true generating density Py,
and to the general open question of why over-parametrized deep neural
networks generalize so well.
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Remark 6.2. In [HAP20] (which was uploaded as a preprint only a few
months after we submitted this work to ESANN), the authors indepen-
dently derived the same CL-GN approach, combined with a differential
privacy-protecting layer (as in Chapter 5). Their experiments also tackle
the generation of simple images (MNIST and fashion-MNIST), which seems
to indicate that the approach presented in this section is indeed applicable
to medium-dimensional data as well.

We conclude this section by an interesting remark on (6.14). While
usual CL requires closed form expressions for A(Py) and Vg.A(Py), our
GN formalism actually estimates those quantities by Monte-Carlo sam-
pling, i.e., replacing Py by Pg. This idea could be applied to other CL tasks
where A(Py) and/or Vg A(Pp) cannot be computed in closed-form.

6.3 When Compressive Learning fails

Compressive learning usually (e.g., compressive k-means or GMM) requires
solving a non-convex optimization problem, hence in practice approximate
heuristics (such as CLOMPR) are used. In this work we explore, by numeri-
cal simulations, properties of this non-convex optimization landscape and
those heuristics.

6.3.1 Motivation

Context In general, the sketch of a distribution P is a linear operator,
constructed as a set of generalized moments A(P) := E,.p ®(x) where
the feature map @ is typically randomly generated; the sketch of a dataset
is then the empirical average those features. In this work we focus, on the
random Fourier features sketch, associated with the feature map ®(x) :=

¢'% ie. the sketch of the dataset X = {x;}1 s

zi= Ao (LXi dx) = by, e c O, (6.16)
where Jy is the Dirac measure at x and Q = (w; € ]Rd);.”:l is a set of m
“frequencies” generated i.i.d. according to some law A. To avoid over-
sampling large frequencies (due to the curse of dimensionality), a good
heuristic [KBGP18] is to set w = R¢, where ¢ ~ U(S%1) is a normed
random direction and R ~ pg(R;0) is the norm of w. In [KBGP18], this
latter distribution is either (FG) a folded Gaussian pg o e’(”R)Z, or (AR)
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Nl—=

the adapted radius distribution defined as pg o ((UR)2 + @) e—(0R)?.
In both cases o is a scale parameter, which should be adjusted to the current
dataset either by prior knowledge or from a fast heuristic (see Sec. 6.3.3).

Learning some target parameters 0 from the sketch is then formulated
as an inverse problem, where the "signal" to recover is a density Py (see
Section 2.5). More precisely, the model 8 estimated from z is found using
the "sketch matching" cost function C,

0e argmeinC(B;z) where C(6;z) := ||z — A(Pp) 3. (6.17)

The cost C(6; z) is non-convex, hence challenging to optimize exactly. In
practice, a heuristic algorithm is used to solve it approximately, i.e., a de-
coder A : z — 0p ~ argmingC(6;z). For k-means and GMM, the stan-
dard decoder is CLOMPR. It starts from an empty solution and greedily adds
new atoms 0, (i.e., a single Gaussian or centroid) to the current solution
0, where new atoms Bf( are found by maximizing the non-convex criterion
(A(Pg ),z — A(Po)), starting from a random intial point. To increase the
chances of success, T trials of CLOMPR can be run independently and the so-
lution with the lowest cost is selected, an approach we call CLOMPRxT. This
decoder showed convincing empirical success for both GMM [KBGP18]
and k-means [KTTG17]. For k-means specifically, the CLAMP decoder (Com-
pressive Learning with Approximate Message Parsing) was also been pro-
posed [BCGS19], which allowed to recover the centroids with lower sketch
sizes, but in this work we focus mainly on CLOMPR.

Problem statement Previous works thus observed that compressive learn-
ing (e.g., using CLOMPR) performed well under the right circumstances (e.g.,
when the sketch size m is large enough, and its frequency sampling pattern
A is well-chosen). But is it possible to improve the existing CL schemes further?
And if so, how? To perform constructive research on these question, we must first
understand when and why existing compressive learning schemes fail. In this
work, we provide some insights on this question, based on observations
from numerical simulations.

6.3.2 Methodology: CL failure scenarii

In Fig. 6.5, we classify the different outcomes (a) — (e) that are possible
when one runs a compressive learning decoder A on a given sketch z, ar-
ranged by "what could go wrong". If the sketch was poorly designed, then
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C(6;z)

5 0
0A00
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Fig. 6.5 Five scenarii in compressive learning: the cost function C (de-
termined by the sketch z) can be bad (when 8 # 6%, cases (a) and (b)),
acceptable (when 0 ~ 0, but with a small basin of attraction, cases (c)
and (d)), or good (8 ~ 6* with a large basin of attraction, case (¢)). Given
this cost function, the decoder A can either fail to find the global optimum
(when 0, # 8, cases (a) and (c)) or “succeed” (when 0, ~ 0, the latter
being possibly different from 6, cases (b), (d) and (e)).

C does not indicate (through its global minimum 8) the desired parameters
0", as shown in cases (a) — (b). In [GBKT17], the authors derive theoret-
ical guarantees on (an upper bound for) the probability that this failure
occurs, as a function of the sketch size m and the compatibility between
the sketching function and the target learning task (see also Chapter 4).

However, even if the sketch matching cost function aligns with the ideal
parameters, it is possible that the decoder fails to solve the non-convex
problem, as shown in case (c) (the existing decoders do not have any guar-
antee). Whether or not the decoder succeeds depends on the general shape
of the cost C (besides the position of its global optimum). In CLOMPR for
example, convergence to 8 is ensured if the random initialization point
falls into its basin of attraction. It was shown (for the centroid selection in k-
means) that the size of this basin of attraction increases with the sketch size
m [TA19]. To understand how to improve current CL schemes, we would
like to classify practical failures of decoders into either scenarii (a) — (b)
(where we know that performance improvement is possible—and, for (b),
necessary—by changing the sketch function) or scenario (¢) (where we
know that improvement is possible by changing the decoder).
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In what follows, we analyze how this classification is modified when
two parameters of the sketch are affected, namely the sketch size m and
scale parameter ¢ in the frequency sampling. Our general strategy con-
sists in focusing on controlled toy problems, where the true parameters
0" are known, and to compare the value of the cost function at this solu-
tion C(6*; z) with the one obtained by the decoder C(60,;z). If C(6*%;z) <
C(64; z), we know for sure that the decoder failed 6 # 5, which provides
a useful clue in identifying the relevant scenario.

6.3.3 Experimental results

Influence of the sketch size In this section we focus on the k-means
problem, where the goal is to position K centroids c; such that the Sum
of Squared Errors, SSE({c}K ) := ¥;miny ||x; — ¢||3, is minimized. In
Fig. 6.6 we plot the quality of compressively learned centroids (by CLOMPR
with 10 trials) as a function of m; as expected from previous works, they are
always perfectly recovered when m > 10Kd, which corresponds to case (e).
We also compared the cost of those centroids C(6cromprx10) With the cost
of the ground-truth centroids C(6*), and reported the average number of
times that C(Ocromprx10) > C(0"). This allows us to identify an additional
regime: when m < Kd, we know that we are most probably in case (a —b),
i.e., the cost is ill-defined (note that here the condition m < Kd coincides
with the over-parameterized regime where there are less measurements
than degrees of freedom). In between (1 < m/Kd < 10), the situation
is less clear: as the number of measurements increase, we transition from
(a — b) to (c) with gradually more (d), then finally to (e), but it’s not clear
at which point the (a) — (b) situation switches to (c).

To investigate this transition further, we perform another experiment,
where this time we keep () fixed to analyze only the performance of the
decoder for a fixed cost: this is shown Fig. 6.7. Moreover, we would like to
approach the global minimizer 8 as much as possible. For this purpose, we
propose a new genetic-algorithm-based decoder, that we name GenetiCL.
Its principle is to maintain a population of “chromosome” candidate so-
lutions 6 that explore the optimization landscape by random “mutations”
(noise) and combinations by “crossover” (swapping centroids) based on a
fitness score that we set to be ||z — A(Pp)l|,” for 7 > 0. While orders of
magnitude slower than CLOMPR (we strongly discourage using it for any-
thing other than very specific research purposes), it finds more promising
(local) minimizers to C, see Fig. 6.7. For m > 2Kd, GenetiCL performs bet-
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Detected failures [%)] _

R B 4 ;
loge(m/Kd)

Fig. 6.6 Blue: relative SSE (with respect to k-means) of the compressively
learned centroids Ocramprx10, @s a function of the sketch size m (log scale,
median over 50 draws of ). Red: number of times a failure of the type
C(Bcrovprx10; 2) > C(0%;z) was detected. The data are n = 5 X 10% points
drawn from K = 10 Gaussians in d = 10.

ter, and we are for sure in case (c) for CLOMPR. In this region, we can hope
that better decoders would succeed, although the existence of an efficient
one (i.e., not GenetiCL) is an open question. However, uncertainty remains
in the zone Kd < m < 2Kd, as the ground truth cost is lower than what the
decoders can find, hence it’s not certain whether we are in case (c) or (a).

Influence of the scale and task We now analyse how the cost function
C changes with the sketch scale o, as well as with the considered task
(solving k-means or GMM from a same sketch), which is shown Fig. 6.8.
First, notice that there exist scales (log;,(c) € [0,0.5] in our case) where
k-means succeeds but GMM fails. Intuitively, the culprit is the sketch (case
(b)), which captures a very coarse view of the data distribution; it can-
not estimate the clusters shape precisely, but can still locate them. Con-
versely, there are also scales (log;,(c) € [-3,—1.5] in our case) where
GMM succeeds but k-means fails. This is more surprising, as the success-
fully extracted GMM contains® the centroids (in the means of the Gaus-
sians); we thus intuitively expect that the decoder failed (case (c)), which
would mean that switching the task from k-means to GMM leads to a bet-
ter cost function (going from (c) to (e)). Plotting the detected failures (as

3Since the Gaussian clusters are well-separated.
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Fig. 6.7 Left: cost function C(6;z) as a function of an increasing sketch
size m (for a fixed draw of ), evaluated on the centroids 8, obtained by
different decoders (A € {CLOMPR, CLOMPRx10, GenetiCL}) as well as the on
“ground-truth” centroids 0. Right: relative SSE corresponding to those
centroids 6. Data are n = 10° samples from K = 10 Gaussians in d = 5.
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Fig. 6.8 Empirical success rate of CLOMPRx3 when solving k-means (blue,
defining success as RSSE < 1.3) and GMM fitting (orange, defining suc-
cess as Py(X) > (1.3) 1Py« (X) with P(X) the likelihood of X given P)
from a sketch with m = 20Kd frequencies drawn from the FG (plain) and
AR (dashed) distributions with varying scale o. The heuristic proposed
in [KBGP18] for GMM (resp. in [BCGS19] for k-means) yields o7 (resp.
02), indicated by black triangles. Data are n = 10° samples from K = 6
Gaussians ind = 5.
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in Fig. 6.6, not shown here for conciseness) supports these explanations:
when log,,(c) € [-3,—1.5] we systematically detect failures of the k-
means decoder (meaning that (c) is possible), but when log,,(¢) € [0,0.5]
no such failures are detected from the GMM decoder (meaning we are for
sure in (a) — (b)).
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Conclusion

Neuve to start my first day as a PhD student, my head was full

of wild ambitions about how I would revolutionize compressive
learning, which would in turn revolutionize machine learning. While nei-
ther of those revolutions happened (of course!), it is time to take a step
back and reflect on what was (actually) done, what could be improved,
and why compressive learning still has not taken over the world (yet?).

ON the second of October 2017, sitting on the bus for Louvain-la-

7.1 Summary and perspectives of the contributions

Chapter 3: Asymmetric Random Periodic Features

Summary: This chapter was about random periodic features (RPF), a fam-
ily of feature maps where signals x € X are projected onto random vectors
w; ~ A, offset by a random dither & ~ U™ ([0,27)), and passed through a
generic 27t-periodic function f, i.e., zf(x) := ﬁ (O x + &). More specif-
ically, we studied asymmetric RPF, where the periodic map f # g can be
different for the two signals x,x’ € ¥ that are being compared. We stud-
ied the geometry induced by the dot product (zf(x), zg(x")) =~ x4 (x,x')
where k¢ (x, x") is some approximated kernel.

1One thing that I quickly discovered was that, apparently, you cannot revolutionize a field
on your own. A lot of research is required for that, and research, well, takes a lot of time.
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We showed how « , relates to « (the Fourier transform of A and the
shift-invariant kernel approximated by RFE, when f and g are a cosine
or complex exponential), which is a scale mixture of ¥ weighted by the
Fourier series of f and g. We then studied how the kernel approximation
error |(zf(x),zg(¥')) — K¢, (x,x)| evolves with respect to the embedding
dimension m. In particular, we showed how to control the error uniformly
(ie., for all x,x' € ¥) over an infinite but compact set X. Special efforts
were dedicated to obtain results that are valid even when f and/or g are
discontinuous, as long as they are smooth "on average" (where the averag-
ing is obtained through the dither ¢), a notion we formalized as the mean
Lipschitz smoothness property.

As concrete application of this strategy, we explored semi-quantized ker-
nel machines, i.e., kernel methods that are built on the random Fourier fea-
tures approximation but where one of the signals being compared (e.g.,
the test vector or the dataset vectors) is binarized to one-bit features. This
potentially has a huge interest in terms of storage and transmission costs.
We showed through numerical simulations that the kernel approximation
suffers only slightly from the binarization of one of the two features, and
highlighted the interest of the strategy in a learning context (e.g., on hyper-
spectral classification data).

Perspectives: As already mentioned at the end of that chapter, the ker-
nel approximation capabilities alone are not enough to use this scheme
effectively in practice. It is indeed important to take the kernel approxima-
tion error into account while tuning the parameters 0 as well as the hyper-
parameters of the related kernel method (e.g., the regularization strength
and the kernel bandwidth). While one can of course still use a validation
set (where it is possible to apply the asymmetric RPF at test time), to guide
the choice of parameters, this method is somewhat indirect. A better so-
lution would be to incorporate the asymmetry directly during the training
stage (while searching for the optimal parameters 6). However, the best
way to do this (ideally, with associated statistical learning guarantees) is
still an open question (e.g., would it be meaningful to use an asymmetric
Gram matrix K;; = K¢ (%, x})?).

It is also worth mentioning that the asymmetric features strategy opens
many possibilities beyond those studied in Chapter 3, where one of the two
periodic maps was systematically ¢(-) = cos(-) or g(-) = exp(i-) in order
to recover a specific kernel x—that is assumed a priori to be the target.
A systematic approach to the asymmetric RPF strategy could for instance
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simultaneously design the frequency sampling pattern A and the two pe-
riodic maps f and g (instead of sequentially, as we did). This co-design
would then be guided by specific constraints on the specific devices that
must respectively evaluate f and g (e.g., a client and server), and of course
the generalization capabilities of the resulting kernel method (i.e., based on
K¢ which would here not necessarily be given by x = F “IA).

Chapter 4: Quantized Sketching with Guarantees

Summary: This chapter can somehow be seen as the "sketched" equiva-
lent of the previous one. It introduced a generic relaxation of compressive
learning, called asymmetric compressive learning, where the feature map dur-
ing the sketching stage ¥ # & is allowed to differ from ®, the one used
during the learning stage. More formally, we compute the dataset sketch
as zy y but learn from it by optimizing Ce (6; zy ) (where the ® subscript
denotes that the cost function depends on ®). We identified a sufficient
condition, the Limited Projected Distortion (LPD) property, which guar-
antees that asymmetric CL is not much worse than usual (symmetric) CL.
Intuitively, the LPD ensures that the sketch computed from ¥ or from ®
is not too different along the directions that are relevant in evaluations the
cost functions Co (6; zy v ) and Co(6; zg v ), respectively.

We then focused on RPF sketches, computed as the dataset average of
random periodic features (see Chapter 3). In order to obtain guarantees
for compressive learning (where ® = P is the usual random Fourier
features map, commonly used in CL) from such sketches, we introduced a
hack to only have to prove the LPD on the space of signals x € ¥ rather
than the space of probability distributions P € G, Q € G. We were then
able to leverage the results from the previous chapter in order to guarantee
the LPD (and thus, the overall statistical learning guarantees) for CL with
RPF sketches.

While developing those generic results, our main motivation was to
study quantized sketching, where the sketch contributions ¥ (x;) are bina-
rized random Fourier features. This approach is interesting to further re-
duce the computational cost of sketching from large-scale datasets, e.g.,
using dedicated hardware implementations. To confirm the power of this
approach, we performed experiments in a wide variety of settings, solving
both k-means and GMM from quantized sketches while incurring only a
small loss of performance with respect to "full-precision sketches".
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Perspectives: We already deplored at the end of that chapter the fact that
our argument relied on the low-complexity nature of a signal set . (which,
to be leveraged in the LPD, requires to enforce additional constraints on
the learning procedure) instead of the low-complexity nature of the model
set G (which is the only assumption needed in symmetric CL [GBKT17]).
Although we argued that such constraints are reasonable in known prac-
tical applications of CL, a more elegant solution would thus be to prove
the LPD (or another sufficient property) using only the latter assumption,
which would make our results for asymmetric CL completely analogous
to those of symmetric CL. However, our several attempts towards this di-
rection remain unsuccessful so far. An impossibility result could maybe be
a consolation price?

On a more cheerful note, several novel applications of our generic re-
sults on asymmetric CL seem to be worth exploring. First, the LPD could
be used to formally analyze other types of "distortions" applied to the
sketch feature map (beyond quantization). For example, our framework
could be used to analyze the impact of the subsampling mechanism proposed
in [CSH"21], where the sketching feature map ¥ is a masked version of the
learning feature map ® (although the random nature of the masking oper-
ation must be carefully handled, and the "signal-LPD hack" would here be
severely sub-optimal). Second, in our results we focused on distortions of
® = Prg the RFF feature map (used for compressive k-means and GMM),
but other feature maps ® and related distortions (e.g., quantization) could
be worth studying in this setting, such as the random quadratic features
(used for compressive PCA).

Chapter 5: Private Sketching

Summary: This chapter focused on the aspects I contributed to in a col-
laboration, which explored the addition of a (differential) privacy-protecting
layer to the sketching phase. Indeed, since the contribution of a specific in-
dividual to the sketch gets "drowned" into the average operation of the
sketch, one expects the sketch to be a "privacy-friendly" summary of the
dataset. To formalize this intuitive claim, we considered the golden stan-
dard definition of privacy, i.e., differential privacy, which ensures that the
output of a (random) data-processing algorithm depends negligibly on the
presence or absence of any individual in the dataset—as captured by a pri-
vacy parameter €. The lower €, the stronger the privacy guarantee, but also
the higher the risk of degrading the utility of the algorithm’s output.
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We thus considered a noise addition mechanism on top of the sketching
phase, which adds well-calibrated Laplacian (resp. Gaussian) noise to the
sketch to ensure pure (resp. approximate) differential privacy of its con-
tributors. To precisely calibrate this noise (which is moreover inversely
proportional to the privacy parameter €), we established the sensitivity of
the sketching feature map. While we presented only a direct upper bound
(for the L' sensitivity) in this thesis, a significant part of our efforts was
dedicated to show that this bound is in fact sharp, i.e., the sensitivity bound
cannot be improved.

We compared the practical interest of our private sketching mecha-
nism by comparing it in numerical experiments to state-of-the-art privacy-
preserving machine learning algorithms on the k-means and Gaussian mix-
ture modeling tasks. Our experiments suggest that our approach outper-
forms (i.e., in terms of privacy-utility tradeoff) preceding approaches in sev-
eral regimes, although with the caveat that the choice of the hyperparame-
ters is tricky for all the involved methods.

On top of those promising results, private sketching presents several
desirable features, which were also discussed. A first example is the abil-
ity to—almost trivially—handle the distributed privacy-preserving machine
learning context. Another promising attribute is the possibility to re-use
the private sketch ad infimum without weakening the privacy guarantee,
which is ensured "once and for all". This stands in sharp contrast with
the majority of existing approaches, which rely on a multitude of specific
queries to the datasets (one for each iteration of some algorithm), each of
those requiring some part of the precious privacy budget €.

Perspectives: To achieve differential privacy, noise addition to the sketch
seems to be the best available solution (we explored several other schemes
without much success), for which we already characterized the optimal
noise level in most practical use-cases. However, differential privacy can
be a very strong requirement in practice. Intuitively, even without noise
addition, almost no "information"? about a particular individual can be
inferred from the sketch alone?, an intuition which could be formalized by
other notions of privacy (e.g., based on mutual information).

Interestingly, if we consider the private sketching mechanism solely as
a privacy-enhancing tool, we somehow gain the freedom to consider more

2This however requires additional assumptions on the side information available to the
attacker.
3Especially when combined with the feature subsampling strategy from [CSH*21].
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expensive methods to extract information from the sketch (as the computa-
tional cost aspect is now secondary). Based on this premise, we tentatively
explored (not reported in this manuscript) a heuristic to compute arbitrary
moments of the dataset, i.e., any quantity of the form F = 1 Yvex f(x;) for
some generic function f : £ — R, from a private sketch. The underlying
scenario is that a data analyst, who already acquired a given private sketch,
might try to squeeze out as much information from it as possible using this
method. Preliminary results show that this approach can sometimes give
accurate answers, but a more thorough analysis is still missing.

Chapter 6: Extensions to novel tasks

Summary: Three contributions were grouped into this chapter. First, we
presented and interpreted a simple strategy to perform compressive clasi-
fication, i.e., computing one sketch z y, per class k (which amounts to sketch-
ing the different conditional distributions P (x|k) independently). To clas-
sify new signals x’, we pick the class whose sketch zy,_is the most corre-
lated with its features ®(x'). We argued that—under some law of large
numbers approximations—this scheme can be interpreted as maximum a
posteriori classification performed in the reproducible kernel Hilbert space
associated with the sketch kernel «(x,x") = E(®(x), ®(x')). We empiri-
cally validated this approach on toy example and classic datasets. We also
suggested the idea of using randomly weighted (convolutional) neural net-
works as feature map that is better suited to image data, which indeed
outperformed plain random Fourier features in our simulations.

As a second task extension, we described a strategy to compressively
learn generative networks using only the dataset sketch (CL-GN). Our
scheme is intimately related to the moment matching generative network
approach (MMD-GN) [LSZ15,D"15], which it approximates in expectation
(over the draw of the sketch feature map). Compared to MMD-GN:s, pro-
vided the required sketch size m is sufficiently small, our approach should be
significantly cheaper computation-wise. We performed a proof-of-concept
validation of the approach on 2-d toy example datasets, and noted that
more extensive experiments on this same scheme were later performed
in [HAP20].

The last contribution of that chapter was the description and demon-
stration of generic techniques to investigate why compressive learning
might fail in practice. Is it because the sketch z is poorly designed (e.g.,
its size m or scale ¢ is not adapted to the data and problem) or because the
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heuristic compressive learning algorithm (i.e., the decoder, such as CLOMP)
did not find the global optimum of its nonconvex cost function? The main
technique we presented relies on comparing the value of the cost function
at the obtained solution C(6,;z) to the one at the ground-truth solution
C(6%;z). Another one was to compare the decoder to one that is closer to
brute-force optimization of the cost, which is more expensive but might
be more successful in finding the global solution (here based on genetic
optimization). We demonstrated how this approach allows to obtain new
insights on the selection of the sketch parameters m and o.

Perspectives: For compressive classification, we already highlighted that
the scheme seems limited due to the difficulty of finding an appropri-
ate feature map & (i.e., an appropriate kernel). There are however a few
steps that could be taken to shed some light on the question. For exam-
ple, it might be judicious to first further investigate the un-sketched ver-
sion of this classifier, namely the Parzen-windows classifier, to obtain a
better idea of the possible performance. Results from kernel mean em-
beddings [MFSS17] should be particularly useful in this regard. Another
modified scheme that might provide insights on the potential of compres-
sive classification is a relaxation where we are allowed to learn the matrix of
projections € (and thus the kernel), e.g., in a neural network fashion, which
provides an upper bound on the achievable performance.

The idea to use randomly weighted neural networks as sketch feature
map might be worth further investigations as well. There are however sev-
eral points that make the analysis of this feature map significantly harder
than the usual random Fourier features. From a pragmatic point of view,
the space of design choices becomes much larger, as one has to pick a net-
work architecture, as well as the random initialization distributions for all
the weights in the network. Moreover, one loses the direct relation between
the generation of the feature map and the approximated kernel x(x,x’) =
E(®(x), ®(x')) (i.e., the Fourier transform in the case of RFF), which might
further complicate the theoretical analysis of the DNN-features approach.
Recent results from neural tangent kernels might prove to be helpful in this
regard [JGH18].

For compressive learning of generative networks, beyond the same
difficulties in the design of ®, the main open question is to determine the
sketch size m which is required for the approach to work (if m must be
too large to learn accurate GNs in practice, the computational advantages
might be nullified, except for very-large-scale datasets). As generative net-
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works are typically over-parameterized, this seems to be a challenging task
as the learned model Py is not "sparse", which stands in sharp contrast with
the current framework to obtain CL guarantees [GBKT17]. The implicit reg-
ularization phenomenon which is currently researched in deep neural net-
works literature can maybe play a role here.

Beside the techniques we presented to investigate why compressive
learning fails, there is another idea that might be of interest, when no "fail-
ures” of the decoder are detected but the compressive learning algorithm
still fails. This additional technique consists in numerically optimizing the
cost C(0) by providing the ground-truth solution 6* as initialization point.
If the optimization solver steers away from 6%, we know that we are in a
scenario where the cost function is poorly designed (cases (a) — (b)), i.e.,
the sketch z should be improved.

We expect that the simple techniques we described to "debug" compres-
sive learning decoders (comparison of the cost functions and empirical risk
of 6 and 0%, using a computationally expensive but potentially more accu-
rate decoder, initialization of the decoder at 8*) might be of general interest
to CL researchers, and might be especially useful in particular in the quest
to extend CL to novel tasks.

7.2 Final thoughts: compressive learning, hype or hope?

Compressive learning is a promising tool to tackle the problem of learning
from large-scale datasets with limited computational resources. This thesis
broadened the scope of this field by introducing asymmetric compressive
learning, privacy-aware compressive learning, and some leads on how to
perform compressive classification and generative networks.

However, it must be acknowledged that CL is still rather limited in its
applications. Of course, some progress has been made recently, both on
the theoretical side [GBKT20,SGD19] as well as on the practical side, e.g.,
tackling the tasks of PCA [Cha20] or ICA [SKD19]. But many of the most
important machine learning techniques (e.g., supervised learning) still can-
not be convincingly solved by CL.

The main explanation, I believe, is that for the "core" CL methods—
mixture model density fitting and k-means, the latter being a special case
of the former—it so happens that the stars are extremely well aligned. In par-
ticular, the random Fourier features sketch Ag,,. is particularly appropriate
to density fitting tasks, because (i) in density fitting tasks the data samples
are assumed to live in Euclidean space RY, for which shift-invariant ker-
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nels «* (such as the Gaussian kernel) are meaningful. In addition, (ii) the
existence of a large body of work on kernel mean embeddings [MFSS17]
provides numerous insights and theoretical tools to study properties of the
sketch-induced distance || Agy (Po) — Adge (Pv)|l2, which is a particu-
larly relevant quantity in density fitting tasks (see [GBKT20]).

Moreover, the low-complexity prior Py for mixture models (a linear com-
bination of a few simple "atomic" probability distributions) is also partic-
ularly favorable. This is because (iii) it enjoys a strong connection with
compressive sensing theory, from which it can thus draw many inspira-
tion and insights (e.g., the OMP-based recovery procedure), and finally (iv)
when combined with the RFF, the atoms of main density fitting problems
(Diracs or Gaussians) have simple closed-form expression for Ag,.(Ps)
and Vg Ag,, (Pg), quantities required by the recovery procedure.

I would argue that the impressive success of compressive learning for
density fitting (i.e., GMM, k-means) is highly dependent on the combina-
tion of all the advantages (i)-(iv). As soon as either the sketch feature map
® is changed (e.g., to work on structured data, or to capture other types of
information from the data than its distribution Py, as in semi-parametric
CL [SGD19]) or if the low-complexity prior Py is changed (e.g., to solve a
different task), those advantages are lost. As a consequence, CL then be-
comes conceptually much more difficult.

This does not mean that all hope is lost for compressive learning. If
sufficient patience and research efforts are devoted to it, I believe that in
the long run CL can truly become a valuable tool in real-life applications
of large-scale machine learning. However, it is probably worth keeping
the vulnerabilities of the CL framework in mind (e.g., to losing advantages
(i)-(iv)) to guide further research efforts in the field.
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Useful quantities about
periodic functions

defined by a generic periodic function f. In the context of this anal-

ysis, several quantities about f must be computed: its Fourier Series
(FS) coefficients {Fy }rcz, several of its L, norms (in particular for p = 2
and o0), and its mean Lipschitz smoothness L', introduced in Section 3.4.
Among others, we apply those results to particular cases where f is one of
the following functions (the definitions are reminded below): the cosine,
the complex exponential, the (real- or complex-valued) one-bit universal
quantization, and the (real- or complex-valued) normalized modulo func-
tion. For convenience, this appendix gathers all those results, along with
short proofs when relevant.

IN Part I, we study random features (and the resulting sketch operator)

A.1 Reminder on the relevant definitions

We consider generic (possibly complex-valued) periodic functions f : R —
C, that are assumed to be bounded. Without loss of generality (more on
this in the next subsection), we focus in particular on the case where f is
normalized such that its fundamental period is 27, and it is centered (zero-
mean) foznf(t) dt =0.
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A.1.1 Quantities to compute

We can then decompose f(t) = Yoo . FeX as a Fourier Series (FS),
where the coefficients F; are

Foi= & [ZTf(te*tdt, VkeZ. (A1)

Note that if f is centered, we have Fy = 0.
Another quantity of interest is the 2-norm of f, noted || f||» (or simply
written || f||). It is defined as

- /
£l = (& S 1rRar) ", (A2)

and can moreover be expressed as | f||3 = Y |F|? (Parseval’s theorem).
Another norm of interest is the infinity norm, i.e., the largest absolute value

of f,
1 flleo = supye o If ()] (A3)

Finally, we recall the mean Lipschitz smoothness constant L? we intro-

duced in Chapter 3, defined as' the largest local deviation of f on average:
2
LJ@ ‘= SUPg_s<n 337 Jo | SUP_sepes | f(E+7) — f(E)|dL. (A4)

A.1.2  Normalization properties

Many different renormalizations of f can be performed. Since we know
from experience that it is easy to get lost in the different normalizations,
we remind some basic facts here.

Lemma A.1 (Rescaling). For some real scalars a, B, to, if (t) := af (t — to) +
B, we have

e (Fourier Series) Gy, = we™ "o F 4 By,
* (norms) ||g||p = «||f||p, provided B = 0;
* (mean Lipschitz smoothness) L? = zxL?.

One operation we also often perform is to compose a complex-valued
function g by adding two phase-shifted copies of a real-valued function f
(which implies conjugate symmetry in the Fourier domain, i.e., F_; = F).

Here we seek the lowest possible constant such that the mean Lipschitz property holds.
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Lemma A.2 (Complex version of a real-valued periodic function). If g(t) :=
f(t) +if(t— %) for f : R = R, we have

o (Fourier Series) Gy = Fe(1+ ¢'2(1=%)), and in particular G; = 2F, and
G1=0;

* (norms) ||g||p < 2||f||, (notice the inequality sign);

e (mean Lipschitz smoothness) Lg < ZL? (idem).

A.2 Computing the constants

A.2.1 Trigonometric functions

Let us start with the basic cosine function.
Lemma A.3 (Cosine). Let f(t) = cos(t), it satisfies

* (Fourier Series) F, = 56 1 + %5k,+1 (i.e., 1/2 for k = £1 and 0 for all
other k), in particular Fy = % ;

e (2-norm) ||f|l2 = \%;
e (infinity norm) || flle = 1;
o (mean Lipschitz smoothness) Ll = 5. f027r |sin(t)|dt = 2 < 1.
For the complex exponential, we have
Lemma A.4 (Complex exponential). Let f(t) = exp(it), it satisfies
* (Fourier Series) Fi = 6y 1 (i.e., F; = 1 and O for all other k);
e (2-norm) ||f|l2 = 1;
e (infinity norm) || flle = 1;

e (mean Lipschitz smoothness) L; = 1.

A.2.2  One-bit universal quantization

We recall the (real) one-bit universal quantization function g : R — R

+1 if 2k — F <t <2nk + 7 for somek € Z,

—1 else.

q(t) := sign o cos(t) = {
(A.5)
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It is, up to a re-scaling (see Lemma A.1), the least significant bit of a stan-
dard scalar quantizer. Or geometrically, it is a square wave. One can show
the following.

Lemma A.5 (Periodic quantization, real). Let q(t) be as in (A.5), we have

o (Fourier Series) given by

k=1,
&(-1)=2 1'fk odd, A6)
0 if k even,

and in particular, Q1 = %;
e (infinity norm) ||q||e = 1;
o (mean Lipschitz smoothness) L = % (proof in Prop. 3.19).

When considering the complex extension of this quantization function,
qgc(t) := sign (exp(it)) = q(t) +iq(t — F ), with sign acting independently
on the real and imaginary part, we obtain the following quantities.

Lemma A.6 (Periodic quantization, complex). Let q¢ (t) := q(t) +iq(t— %),
we have

e (Fourier Series) given by

kmt

(A7)
0 ifkeven,

& ifk =41+ 1forsomel € Z
Qck =

and in particular, Qcy = %;

o (infinity norm) ||qc |l = V2;

8

* (mean Lipschitz smoothness) Lgc ==

Proof. For the Fourier Series, use Lemma A.2. For the infinity norm, ||§]|c =
V12 +12 = \/2,since q(t) € {4141} forall t. The mean Lipschitz smooth-
ness can be computed as in Prop. 3.19, but where the "stumps" in I; appear
twice as much (one stump appearing around each value /7 for I € Z). 0O
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A.2.3 Modulo function

We recall the (real) normalized modulo function, mod : R — R,
mod(t) := mody,(t) with modr(t) :==2(+— [+]) — 1. (A.8)

Geometrically, it is a "sawtooth wave". It satisfies the following.
Lemma A.7 (Normalized modulo, real). Let mod(t) be as in (A.5), we have
o (Fourier Series) given by My = 0 and
M =& ifk#0, (A.9)

and in particular, My = lﬂ;

e (infinity norm) || mod||e = 1;

* (mean Lipschitz smoothness) Lﬁwd = % (proof in Prop. 3.22).
Moreover, its complex extension, mod¢(t) := mod(t) +1i-mod(t — %),

satisfies the following.

Lemma A.8 (Normalized modulo, complex). Let modc¢(t) = mod(t) +1i-
mod(t — %), we have

* (Fourier Series) given by Mc o = 0 and

Mey = 2 (14+i0-0) ik £0, (A.10)
and in particular, Mc, = %

* (infinity norm) |[modc |l = v/5/4;

* (mean Lipschitz smoothness) Lﬁwdc = 4+nﬁ.

Proof. For the Fourier Series, use Lemma A.2. For the infinity norm, it is
easy to verify that [modc|e = 1/12+ (3)? = V/5/4, a value which is
reached between the successive "peaks" of the real and imaginary modulo
functions (see Fig. 4.3). The mean Lipschitz smoothness can be computed
as in Prop. 3.22, but special care must be given to handle the interplay be-
tween the real and imaginary components. More formally, the integral
in (3.18), ie., J5 := fozn SUPp|,|<s |mod(t + r) — mod(t)|dt, can be upper
bounded as (for 6 < T the equality is reached)

Jo < (2m—40)- 22 422532 +2y/(1- £ + ).
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Therefore, since (1 — %)2 + % < 1 (with equality if 6 € {0,27}), %" <
g(0) := 8 — 632+ 8v2(1 — 2. This function g reaches its maximum in
6 = 0, where the equality holds, which means that L], , = sup, <6<n 2% =
42, 0

7T
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learning) toolbox [Sch20], which was developed in the context of

this thesis. It briefly explains how the toolbox is organized (e.g., to
facilitate further contributions). A tutorial then highlights how to use its
main features (e.g., to directly use the toolbox). Complementary practical
examples are available as jupyter notebooks on the main github page of
pycle: https://github.com/schellekensv/pycle.

THIS appendix is a short guide to pycle, the Python compressive

The primary goals for the pycle toolbox are that it should be:

* intuitive to use: practitioners with minimal knowledge in compres-
sive learning and little experience in Python should be able to use it
to implement compressive learning in their own projects;

¢ flexible to new features: researchers with interest in compressive
learning (that want to try out new methods/techniques in CL) should
be able to easily extend this code to suit their own needs, without
having to re-write things from scratch (and eventually, suggesting to
add some features to the toolbox);

¢ efficient to run: the main motivation of compressive learning is based
on the fact that it can be much more memory- and time-efficient
than traditional learning methods, so the performances of the tool-
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box should fulfill that promise (personal note: this goal is still a chal-
lenging for me, this item is rather wishful thinking).

B.1 Preliminaries

B.1.1 Reminder on the compressive learning workflow

In usual machine learning, we fit some parameters 0 (e.g., a parametric
curve in regression, centroids in k-means clustering, weights in a neural
network...) to a given set of training data X'. The actual algorithms for such
tasks usually necessitate to access this training set multiple times (one com-
plete pass on the dataset is sometimes called an “epoch”). This can be cum-
bersome when the dataset is extremely large, and / or distributed across dif-
ferent machines. Compressive learning (CL, also called sketched learning)
seeks to circumvent this issue by compressing the whole dataset into one
lightweight “sketch” vector, that requires only one pass on the dataset and
can be computed in parallel. Learning is then done using only this sketch
instead of the inconveniently large dataset (that can be discarded). This
allows to significantly reduce the computational resources that are needed
to handle massive collections of data.
More precisely, CL comprises two steps:

1. Sketching: The dataset X = {x;|i = 1,..,n} (where we assume
x;i € RY) is compressed as a sketch vector that we note zy, defined
as the average over the dataset of some features ®(x;) (the function
@ : R+ C™ or R™ computes m features, possibly complex):

1 n
Zv = Zicb(xi). (B.1)
ie

Since this is a simple averaging, sketching can be done on different
chunks of X independently, which is quite handy in distributed or
streaming applications.

2. Learning: The target model parameters 6 are then obtained by some
algorithm A that operates only on this sketch,

BIA(Zgg). (B.Z)

Typically, this involves an optimization problem ming f(6; zy ).
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In the following, these steps are explained intuitively, the formal details be-
ing introduced only when needed; for a more solid/exhaustive overview
of compressive learning, see [GBKT17].

B.1.2 Requirements

The pycle package is built on standard Python scientific computing li-
braries: numpy, scipy and matplotlib; if you don’t already have them in-
stalled, follow the instructions at https://www.scipy.org/install.html.

B.1.3 Toolbox organization

The pycle toolbox is a collection of several submodules:

1. The sketching.py module instantiates feature maps then computes
the sketch of datasets with it.

2. The compressive_learning.py module contains the actual “learn-
ing” methods, extracting the desired parameters from the sketch.

3. Theutils.py module contains miscellaneous auxiliary functions, for,
amongst others, generating synthetic datasets and evaluate the ob-
tained solutions (as well quantitatively with well-defined metrics as
qualitatively with visualization tools).

4. Finally, the third_party.py module serves to group code chunks
used by pycle that are written by other developers but not published
as independent packages.

B.2 A tutorial tour of pycle

Let’s explore the core submodules of pycle; our focus here is understand-
ing, so this section is a high-level tutorial rather than an exhaustive enu-
meration of what’s inside the toolbox.

B.2.1 Sketching datasets: the sketching.py submodule

To use the sketching submodule, you first need to import it; I often use
sk as shorthand. Sketching, as defined in (B.1), is done by simply calling
sk.computeSketch, as follows (we'll fill in the dots later):

import pycle.sketching as sk # import the sketching submodule
X = ... # load a numpy array of dimension (n,d)
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Phi = ... # sketch feature map, see later

z = sk.computeSketch(X,Phi) # z is a numpy array containing the
sketch

As shown in the code snippet, sk. computeSketch requires two arguments:
the dataset X' (given as a numpy array of dimensions (1, d)) and the feature
map ®, which must be an instance of a sk.FeatureMap object'. Actually,
all feature maps used up to now in CL are of the following “Simple Feature
Map” form:

D(x) = f(QTx+§), (B.3)

where
Q= [wlr"' IWm] E]Rdxm'g: [érl/"' /gm]TE]le (B4)
and f is a point-wise nonlinearity (i.e., ®;(x) = f (ijx +¢&;) for all j)*. You

can instantiate such a nonlinearity in pycle using the a SimpleFeatureMap
child class:

import pycle.sketching as sk

f=... # nonlinearity (Python function, tuple or string)
Omega = ... # (d,m) numpy array
xi= ... # (m,) numpy array

Phi = sk.SimpleFeatureMap(f, Omega, xi)

We now explain how to set those three arguments.

* Nonlinearity f: you can simply pass as a string the name of standard
nonlinearities used in CL, such as:

- "complexExponential", for the complex exponential f(-) = exp(i-)
(corresponds to the random Fourier features sketch);

- "cosine", simply the cosine f(-) = cos(-) (the real part of the
random Fourier features sketch);

!Why do we use FeatureMap objects instead of (Python) functions to represent... well,
(mathematical) functions? The reason is that we often require additional information about
@ (such as the ambient dimension d, the target dimension m, a method to compute the jaco-
bian V®,...). All these parameters and methods are thus conveniently packaged inside the
FeatureMap objects.

20ne way to interpret this map is to associate it with a one-layer neural network (without
learning the “weights” ).
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— "universalQuantization", for the one-bit square wave with
normalization in {£1}, given by f(-) = sign o cos(-) and used
for quantized sketching (see Chapter 4). The complex equiv-
alent is also available as "universalQuantization_complex",
which corresponds to f(-) = sign o cos(-) +1i- sign o sin(-).

Alternatively, you can pass in any Python function R — C or R.

However, since computing the gradient® V& requires J(;gt) , you can
also pass in a tuple of functions (f, %gt))
based CL methods later.

in order to use gradient-

* Projections/frequencies Omega: A (d,m) numpy array, typically ran-
domly generated. Without entering into the details, common choices
are instantiated by sk.drawFrequencies(drawType,d,m,Sigma), with
drawType is a string describing the sampling pattern (Gaussian, and
FoldedGaussian or AdaptedRadius which perform better in higher
dimensions, see [KBGP18]) and Sigma is the associated scale param-
eter (in the simplest case, it is a scalar parameter corresponding to
the bandwidth o2 of the associated Gaussian kernel).

e Dither xi: this optional parameter expects an (1, ) numpy array (not
providing anything is equivalent to setting § = 0). To draw i.i.d.
values uniformly from [0, 27t], you can use sk.drawDithering(m).

To summarize, here is a typical example of the creation of a sketch:

import pycle.sketching as sk

# Load the dataset
X= ...
(n,d) = X.shape

# Instantiate the feature map

m = 10*d # Sketch size

Omega = sk.drawFrequencies("FoldedGaussian",d,m,Sigma = 0.01) #
Kernel bandwidth = 0.1

Phi = sk.SimpleFeatureMap("complexExponential", Omega) # No
dithering used here

3Noting the Jacobian matrix V®(x) = [V®;(x), -, V®y(x)] € R¥™ and f'(t) = %(tt)
applied component-wise, we have V®(x) = diag (f'( QTx +))-Q
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# Compute the sketch
z = sk.computeSketch(X,Phi) # z is a numpy array containing the
sketch

B.2.2 Learning from the sketch: the compressive_learning.py submodule

For now, pycle features mainly one algorithm called CLOMPR for mixtures
of Gaussians [KBGP18] and k-means clustering [KTTG17]. In pycle, learn-
ing methods are wrapped into instances of the abstract Solver class, which
gives for example:

import pycle.compressive_learning as cl
# Beforehand, define the feature map Phi and compute the sketch z

# Bounds for the data
bounds = np.array([X.min(axis=0),X.max(axis=0)])

# Number of centroids/gaussian modes
K= ...

# Create the (task-specific) solver (children of the Solver
class)

solver = cl.CLOMP_CKM(Phi,K,bounds,z) # For k-means

# ... OR ...

solver = cl.CLOMP_dGMM(Phi,K,bounds,z) # For GMM

# Learn from the sketch

solver.fit_once()

# ... 0OR ...

solver.fit_several_times(n_times) # Selects the best out of
n_times independent trials

# Access the solution

centroids = solver.get_centroids() # For k-means
# ... 0R ...

GMM = solver.get_GMM() # For GMM

# Do something with the model (prediction, visualizatiomn, ...)
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The way Solver instances are created depend on the specific task at
hand, but for the defines the CLOMP_CKM and CLOMP_dGMM objects (for k-
means or (diagonal) Gaussian Mixture Modeling, respectively), you pass
in a FeatureMap object, a number of components K, data bounds and the
sketch vector.

Then, fit_onceor fit_several_times can be called to actually run the
learning algorithm. With fit_several_times, several independent trials
are run and the best one is selected.

Finally, the achieved solution can be recovered with the solver.current_sol
attribute, or by calling specific functions which improve the output format,
such as

* solver.get_centroids(), outputs the centroids only (ina (K, d) numpy
array).

* solver.get_GMM(), returns a tuple of three elements (w,mus, covs),
where w are the mixture coefficients, and mus and covs are the centers
(resp. covariance matrices) of the Gaussian modes, in a (K, d) numpy
array (resp. (K, d,d) numpy array).

Detailed examples of those tasks are available on the main github page
of the pycle toolbox. With that and the documentation* of the different
functions, you should have a good idea of how to use the toolbox in prac-
tice. In the next section, some advanced functionalities of the toolbox are
described.

B.3 Advanced features of pycle

B.3.1 Helpful tools from the utils.py submodule

Dataset generation tools

Several methods allow to generate synthetic datasets, the most notable
being generatedataset_GMM for datasets sampled from Gaussian mixture
models (with a large set of tunable parameters). Moreover, other toy exam-
ples datasets can be generated with generateCirclesDataset which gen-
erates concentric circles, generateSpiralDataset which generates a spiral
dataset, and generatedataset_Ksparse for K-sparse vectors.

“Just type help (nameOf AFunction) to see all the available options.
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Performance metrics

The toolbox provides several metrics to assess the quality of the learned
models. For k-means, SSE computes the Sum of Squared Errors of a set of
centroids. For Gaussian Mixture Models, 1loglikelihood_GMM assesses the
log-likelihood of the provided Gaussian mixture on a dataset. Moreover,
if a ground-truth GMM is known, symmKLdivergence_GMM estimates the
(symmetrized) Kullback-Leibler divergence between two GMMs [KBGP18].

Visualization tools

To visualize the quality of fit of a GMM to the dataset, plotGMM plots the
contour curves of the given GMMs density, along with the optional dataset.

B.3.2 Designing the sampling pattern parameters when drawing the feature
map

In sketching.py, a strategy to estimate Sigma (used to draw the frequen-
cies) from a small preliminary sketch, described in [KBGP18], is imple-
mented under the name sk.estimateSigna.

B.3.3 Sketching with Differential Privacy

As described in Chapter 5, a layer of differential privacy can easily be in-
corporated on top of the sketch. In pycle, this is achieved by replacing
computeSketch with its variant computeSketch_DP.
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preserving embedding (or coding) developed in "Representation

and Coding of Signal Geometry"” [BRM17]. This allows us to pro-
vide another version of one of their central results, [BRM17, Thm 3.2],
whose proof is incorrect (as described below). While the alternative re-
sult we propose looks slightly different, it fulfills the same goal: a non-
asymptotic guarantee for the geometry-preserving capabilities of the em-
bedding (3.6) with discontinuous f, which holds on infinite signal sets.
This section can be seen as a first (theoretical) application of Prop. 3.15.

OUR approach from Chapter 3 can be related to the context of geometry-

C.1 Geometry-preserving embedding: the initial approach

In [BRM17] the authors study when a mapping ¢ : £ — C™ (such as z¢ de-
fined in (3.6) for f € PF) defines an embedding of X into C" approximately
preserving the proximity of vectors in X. This proximity is measured by
the (local) preservation a distance associated with a £;-norm || - [|; (e.g.,
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the /1 or the f;-norm). Adapting their setting to our conventions!, given
some €,0 > 0, and an invertible function, or distance map, v : Ry — Ry,
they study the conditions ensuring that @ is a (7, 6, €)-embedding of ¥ (en-
dowed with the /;-norm) into C"; or mathematically, such that ¢ respects

(1=8)v(lx—yll:) —€ < llo(x) —@(y) > < (1+8) v([x—yllz) +e (CI)

forall x,y € X.

In (C.1), 7 maps distances in X to (squared) distances in C™, and  and
€ quantify the multiplicative and the additive error, respectively, of the em-
bedding associated with the map -y. For instance, if ¢ is linear with ¢(x) =
Ax, there exists many random constructions of the m x d matrix A with ap-
propriate scaling (e.g., random Gaussian matrix or random partial Fourier
matrix [FR17]) for which (C.1) holds with high probability with ¢; = /5,
€ =0,and y(t) = * for © = £; and m = O(6 2klog(n/k)). Similarly, in
the context of one-bit compressive sensing where ¢(x) = (cm)~1/2sign (Ax)
(for some suitable ¢ > 0), ||@(x) — @(y)||> represents the (scaled) Ham-
ming distance between the two binary vectors ¢(x) and ¢(y), and (C.1) is
verified with high probability over £, N BY with m = O(e2klog(n/k)),
by = £, 6 = 0,and (t) = t [JLBB13]. The work [BRM17] extends this
analysis to general nonlinear feature maps @(-) = z¢(-) for some periodic
function f (such as the universal quantizer 4). In such a context, the au-
thors show that (C.1) holds with a map 7 that often displays two regimes:
a linear regime for small distances in £ (x ~ y), and a saturation regime
where 7y quickly flattens after a certain distance.

As explained in [BRM17, Sec. 4.5], this approach is connected to the
approximation of a kernel x : £ x X — Ry from the inner product of
the images of two vectors, namely, for which (zf(x), zf(y)) ~ x(x,y).
Assuming ||z¢|| = 1 for simplicity, which is the case for complex expo-
nential and universal quantization features, we find | zf(x) — zf(y) > =
2(1 = (zf(x),zf(y))). Therefore, if z¢ is a (7,0,2¢)-embedding of X into
C™, then

K(x,y) —e < (zp(x), z¢(y)) <x(xy) +e, (C2)

Hereafter, departing from the general approach of [BRM17], we always consider the sim-
plified case where C™ is equipped with the Euclidean distance, with a squaring of the corre-
sponding distance in (C.1).
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forall x, y € X, provided we define the kernel

K(x,y) :=1—37(lx —ylly) (C3)

The smoothness of « is thus directly connected to the one of +y; for instance,
if 7 is Lipschitz continuous with constant L, > 0 of IR, then, from the
invertibility of 7 over RT, x is Lipschitz continuous with constant L, /2
with respect to any of its argument. Note that, from Lemma 3.11 and
Lemma 3.14, we also know that if f is mean smooth with constant L?, then

k(x,y) = KJ%, f(x — y) is Lipschitz continuous with constant L, < C AL;‘
with respect to any of its argument (as proved from the bound on ¢, in
the proof of Prop. 3.15). This shows that, despite their different origin, the
smoothness of vy (in the approach [BRM17]) and the one of f (in ours) con-
trol the one of «.

Compared to our approach, [BRM17] imposes the periodic function f
to be “Lipschitz continuous by part” (rather than being mean smooth), as
defined hereafter in a setting adapted to our needs.

Definition C.1 (T-part Lipschitz continuity [BRM17, Def. 2.1]). A function
f :+ ¥ — Cis T-part Lipschitz continuous over S C X with constant
L ¢ > 0, if there exists a finite partition {St}tT:1 of § into T disjoint sets
(ie.,, UL; St = S) such that

vte[T], Vx,y €S, [f(x) = f(y)l < Ly - [lx =yl (C4)

Moreover, f is exactly T-part Lipschitz continuous over S with constant
Ly > 0, which we write f € Lip(S, T, L¢), if it is T-part Lipschitz contin-
uous with that constant but is not (T — 1)-part Lipschitz continuous with
the same constant.

Note that (C.4) both generalizes (3.17) to functions from X C R? to C, and
localizes (3.17) on S.

Following the convention of our paper, the authors of [BRM17] then
prove the following result. We simplify it to the case § = 0 and where each
component of zy has at most T parts of continuity (despite its randomness).

Theorem C.2 (Adapted from [BRM17, Thm 3.2]). Given 0 < € < 1, an L-
Lipschitz continuous distance map v : Ry — Ry, and a signal set ¥ with finite
covering number Cy(X) for any radius > 0, let us assume that, for any fixed
pair of vectors x,y € X, the mapping zy defined in (3.6) satisfies the embedding

relation (C.1) (for & = 0) with probability exceeding 1 — Ce—cme?,
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Let us suppose that there exists a constant Ly > 0 such that, for any x € %,
integer t > 1, radius y > 0, and given Sx(17) == {u € L : |lu — x|y < n} (a
neighborhood of x of radius 1),

P[(zf(-))k € Lip(Sx(n), T, Lf)] < pi(n), (C.5)

with py independent of x, and p;(y7) = 0ift > T for some integer T > 0.
In this context, defining p(y,T) = Y, pi(n)logt and v = L(L, +
L¢)~1, provided that €* > Cp(2ve?, T) and

m > Ce ?(Hye2(Z) + log T), (C.6)
the mapping zy is a (7, 0, 2€)-embedding with probability exceeding 1 — Ce—ce’m,
ie., zf respects

Y(llx = ylls) —2¢ < llzf(x) —zpW)I> < v(llx —ylly) +26, Vxy €L

The statement of this theorem is an easy adaptation of [BRM17, Thm 3.2]
where we set 6 = 0, w(e,d) = c€?, cg = c€, Tmax = T (so that Pp = 0), and
xn=e2<e<1.

Note that the first assumption of this theorem (regarding the fact that (C.1)
holds with high probability for any fixed pair of signals) is proven in a
separate result, namely [BRM17, Thm 4.1]. This theorem is similar to our
Prop. 3.12 (up to an easy extension of this proposition to a finite set of
pairs by union bound). Since the flaw developed below is independent
of that separate result, we abstract this specific assumption away in this
work. As explained in [BRM17, App. E], the conditions of this theorem
can thus be met for instance in the case where f is the universal quan-
tizer. One can then show that T = 2, and defining p»() := Dy, with
D > 0 function of d and A, is appropriate for the bound (C.5). Therefore,
p(2ve?, T) < 2Dve? < €2 /C for an appropriate C > 0.

The statement of this theorem bears similarities with our Prop. 3.15 in
the case where f = g; in essence, keeping in mind the equivalence (C.2),
up to a smaller covering radius scaling as €2 < € < 1 in (C.6), the con-
straint (C.6) is similar to (3.19) if we consider that the T-part Lipschitz con-
tinuity of f replaces its mean smoothness.

However, the proof of Theorem C.2 in [BRM17, App. B] is incorrect.
Let us see why by sketching their arguments in our system of notations
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and using ¢y = {; for the sake of simplicity. Giveny > 0, x € Z, and
t € [T], the authors first (implicitly) note that if the random variable Z(x)
counts the number of components of z(-) that are exactly t-part Lipschitz
over Sx(%) with a given constant L fr then EZ < mp;. Therefore, given
co > 0 and invoking Hoeffding’s inequality, they can upper bound the
probability that Z(x) > mp¢(1 + co) > EZ(x) + mpico with

P[Z(x) = mpi(1+co)] < exp(—2cim).

From this bound (using a union bound over all ¢ € [T]), they then de-
termine that Sy(%) is partitioned in at most S := exp((1 + o) p(17, T)m)
cells with probability greater than 1 — Te~2¢™. Each cell of this partition
of Sx(3) has thus a diameter of at most 7. Moreover, by definition, z £ is
guaranteed to be Lipschitz continuous with constant Ly over every such

cell.

The author then consider the possibility to pick one point per such cell,
called cell center, and to gather them in a finite set of at most S elements.
One can then repeat this construction for all vectors x of a 4-covering /2
of 2, and collect, for each such vector, all cell centers of its related neigh-
borhood into a global set G of centers of at most S x C 7 (X) elements. By
definition, G is thus a 77/2-covering of £ with the additional property that
zg is L¢-Lipschitz continuous over each cell.

The authors then leverage this local continuity as follows. Since, by
hypothesis, the mapping z; defined in (3.6) satisfies the embedding re-
lation (C.1) (for § = 0) with probability exceeding 1 — Ce=me* over any
fixed pair of vectors x,y € L, they first expand this property over all pairs
of vectors taken in G x G. This is ensured with probability exceeding
1-— CSZC%/Z(Z)e*C’mZ, by union bound, since |G x G| < 5205/2(2). Next,
they extend this property to all x, y € X by continuity, exploiting the (local)
Lipschitz continuity of f over each cell.

The flaw, which happens in the first step above, is analogous to how
we cannot show the wrong statement IP[||g|> < 0] = 1/2 for a Gaussian
vector g ~ N'¥(0,1) by assigning another vector u to g in the correct equal-
ity P[(u,g) < 0] = 1/2, valid for u fixed. Indeed, the vectors of G, the
collection of all cell centers, are built from the random mapping zy — each
center must be taken in a cell whose frontiers are controlled by the dis-
continuities of the components of zy. These vectors are thus dependent of
both O ~ A™ and the dither & ~ U™ ([0,27)), through their dependence in
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zy. Therefore, one cannot ensure that the probability that (C.1) holds (with
2

J = 0) on two cell centers x = x(Q,¢),y = y(Q, ) exceeds 1 — Ce™ "¢,
since that probability is itself taken over €, ¢. This flaw breaks the proof
of [BRM17, Thm 3.2].

C.2 An alternative geometry-preserving embedding

One can use Prop. 3.15 to get a variant of Thm C.2 relying on the equiv-
alence between (C.1) and (C.2). This variant achieves the same high-level
goal (i.e., a non-asymptotic guarantee on the approximation error achieved
by the embedding z; that holds infinite signal sets even for discontinu-
ous f), but the assumptions it relies on differ in two aspects. First, the
smoothness of the distance map 7 is not anymore characterized by its Lip-
schitz smoothness directly, but by the constant C,, defined by the sam-
pling scheme A driving the random projections ). Second, we use the
mean Lipschitz property instead of the T-part Lipschitz property as notion
of “generalized smoothness” for the map f. It is not clear if this change is
fundamentally necessary to be able to prove a variant of Thm C.2, but we
leave an investigation of this issue for future work (the universal quantiza-
tion g satisfies both properties anyway).

In fact, the following corollary shows that one can define novel asym-
metric embeddings from X into C'; we can map two vectors of X with dif-
ferent random feature mappings z; and zg achieved with distinct periodic
functions f and g, respectively, and still show that, under certain condi-
tions on f, g, and the frequency distribution A, [|zf(x) — z4(y)||* approxi-
mates a distortion of the distance between any x, y € X provided m is large
compared to the complexity of £. Then, setting f = g provides a specific
embedding of X into C™, in the sense described by [BRM17].

Corollary C.3 (Asymmetric geometry-preserving embedding). Let X be a
compact set with finite covering number, f,g € PF be two real 2rt-periodic
functions and finite mean smoothness constants L > 0 and Lg > 0, respec-
tively. We assume that the frequency distribution A is such that Cp < oo,
and there exists a real, one-dimensional p.d. kernel xj : Ry — [0,1] such that
[F’lA](u) = x5 (||ull4) for some norm || - ||ﬂ

For all error level € > 0, provided the feature dimension is larger than

m>128- % - Heseo(X), (C7)
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with constant ¢ = 4CA(L? + L; + Zmin(Lﬁ, Lg)), we have, with probability
exceeding 1 — 9 exp(—’%z),
Trg(lx = ylls) —4de < llzp(x) — zg()1* < vpg(llx —ylls) +4e, ¥,y €%,

(C.8)
according to the distance map vy ¢ o defined by

Vg i s € R = 7p(s) = IFI17+ lIgl* — 2 Lkez FGy w3 ([Kls) € R+
Therefore, if f = g and if ¢ s is invertible, zy is a (7f,f,0,4€)-embedding of ¥
(equipped with the norm || - ||3) into C™, with 5 ¢(0) = 0 and v ¢(s) € [0,2].

Proof. Under the hypothesis of this corollary and remembering that k¢ o (x, y) =
(zf(x), z¢(y)), Prop. 3.15 tells us that the event

Kre(x,y) —xpe(x,y)| <€ Vxy€X,

holds with probability exceeding 1 — 3 exp(— m6—f12 ). Similarly, with the same

probability, [k ¢ (x,y) — & ¢(x,y)| < € and [Kg (%, y) — xg,¢(x,y)| <€, for
all x,y € X. Therefore, by union bound, these three events jointly hold
. o1s 2
with probability larger than 1 — 9 exp(—%¢-).
Conditionally to this combined occurrence, since «¢ (x, x) = Kj%’ f(O) =

112 and g6 (y, ) = 15,(0) = [|g]2, we find

[(zp(x), zp () = IIFIP] < & [(z5(y) 25 () — lgIP] < e,

and

l27(x) — 22 < £ + g1 — 25, ) + de
= FI2+ gl — 263 o (x — y) + de.

Moreover, from Prop. 3.8, since KJAc’ g(u) = Yrez FGf x*(ku) with *(u) =
(F7IA) (u) = x5 (||lully) and u € R, the definition of 7£,¢ Provides

Vr.gulle) = 112 + lIgll? — 255 o (w),

which proves the upper bound of (C.8), the lower bound being established
similarly.

Since f, g,k € R, I F G} Bx € R for any real coefficients i, we show
easily that 7, € R with v7,6(0) = [IfI* + lIg]I> = 2{f, 8) = [IFII* + lIg]* -
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2[IfI gl > 0. Moreover, if f = g, we get 7,¢(0) = 0 since x5(0) = 0, and
Y£,f(s) € [0,2] since 0 < «f(s) < 1foralls > 0and Yyez |Fel*k§(|k|s) <
I£1I2. O

In this corollary, the existence of a norm || - ||y controlling the behavior
of F~1A is ensured, for instance, if A is a centered Gaussian distribution,
in which case the /;-norm is the />-norm. If A is the Cartesian product
of d Cauchy distributions in R? (with zero location parameter and scale
parameter T > 0), i.e.,

2

d
Aw) = ndLTd | ﬁ/ (C.9)
then 7! A amounts to the Laplace distributionand | - ||; = || - |1 [BRM17,

Sec. 4.2.2.]. Moreover, if A is set to any a-stable distribution witha > 1, i.e.,
a distribution with characteristic function (F~1A)(x) « exp(—c||x||%) with
the Gaussian and the Cauchy distributions as special cases, we can reach
an (asymmetric) embedding associated with the norm || - ||, [OA11].

Regarding the distance map -y ¢ ,, we observe that it does not necessarily
vanish at the origin, when x = y in (C.8). As soon as f # g, a bias exists
since

175(0) = IfI? + I8l =2 Ekez EGi = IIFIP +lIgl* —2(f.8) = IIf — gII%,
(C.10)
using k§(0) = [paA(w)dw = 1. For instance, if f = g (with g the

universal quantizer defined in (3.8)), and g(-) = cos(-), Ygeos(s) = 3 —

2R(F) x4 (s) = 3 — 2k4(s) since || |2 = 1, ||g]|> = 1/2,2Gy = 6k + k1,
and F; = F1 = % from (3.8). Therefore, if A is a Gaussian distribution
with unit standard deviation,

I?

2 (%) = 21 = Ygeos(llx = yll) = § = % exp(=3llx — y[*).

Compared to the case f(-) = g(-) = cos(-) where

Yeoscos (% = yll) = 1 —exp(—3llx —yI),

Al

and 7cos,cos(0) = 0, we thus observe a systematic bias ;,c0s(0) = % —
0.2268 at the origin.

This non-vanishing bias® in the case f # g is not a drawback per se,

2This bias is here demonstrated when the feature space C" is equipped with the squared
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since 7y, can still be invertible. For 7,c0s and a Gaussian A with unit
variance, we find

_ 1/2 .
'yqlgos(s/) = (—Zln(%ﬂ — %s’)) , withs’ € [% - %,%].

This shows that, if € is small enough, we can still reliably infer the dis-
tance between x and y from |[zf(x) — zg(y)|| provided that x ~ y. Indeed,
estimating 'y{;ClOS(Hzf(x) —z¢(y)||*) = |lx — yl| leads to a first order er-
ror [BRM17] proportional to

1 2

(§70c05(5)) e = s eexp(3),
for s = ||x — y||. As expected from the local nature of the embedding, this
error quickly explodes when s is large.

Remark CA. When f = g, v(s) = 2||f]|*> — 2k |Fc|*<5(|k|s) is invert-
ible iff Y |F¢|*x5(|k|s) is invertible. This occurs, for instance, if the one-
dimensional kernel «j is differentiable with x4 (s) < 0foralls > 0, which
is the case of any symmetric a-stable distribution A for which (F~1A)(x) o
exp(—c||x||%). In this case, we easily verify that &(s) > 0fors > 0,and ¢
is monotonically increasing when s increases, starting from y(0) = 0. This
ensures the injectivity of .

{r-distance; the question of its existence for other metrics, such as the ¢;-distance, remains
open.
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List of symbols and
acronyms

Oc Dirac measure (delta) located at a point ¢ (p. 57)
Po True (“ideal”) distribution of the data. (p. 15)
X Dataset, (multi)set of n samples in £. (p. 15)
I, Identity matrix of size n x n. (p. 21)
l Loss function £ x ® — R (p. 16)
AN Probability simplex in dimension N (p. 56)
R Risk function (average loss given a distribution) (p. 16)
M Set of probability measure on the set ¥ (p. 57)
% Signal space. (p. 15)
Ao Sketching operator on measures, defined by ® (p. 62)
Zp,x — Sketch vector of the dataset A’ defined by the map ® (p. 62)
0 Parameter vector. (p. 16)
0 Minimizer of the empirical risk (p. 17)
0* Minimizer of the true risk R(6; Py) (p. 16)
i.i.d. Independent and identically distributed. (p. 15)
ADC Analog-to-Digital Converter (p. 46)
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ADP

Approximate Differential Privacy (p. 165)

AQP
CL

Approximate Query Processing (p. 50)

Compressive Learning (p. 13)

CS

DP

Compressive Sensing (p. 43)

Differential Privacy (p. 161)

ERM

GeMM
GMM
GN

Empirical Risk Minimization (p. 16)

Generalized Method of Moments (p. 61)

Gaussian Mixture Model (p. 37

Generative Network (p. 194

IPM

Integral Probability Metric (p. 58

KRR

LRIP

MAP

Kernel Ridge Regression (p. 29

N

Lower Restricted Isometry Property (p. 45

N

Maximum A Posteriori estimator. 2

ML

P.

—_

Machine Learning (p. 14

MMD

PDF

(€]

Maximum Mean Discrepancy (p.

o1

Probability Density Function (p. 56

QCS

N

Quantized Compressive Sensing (p. 47

RFF

w

Random Fourier Features 1

P.

RIP

N

Restricted Isometry Property (p. 45

RKHS

RPF

N

8

Reproducible Kernel Hilbert Space (p.

[ee}

Random Periodic Features 3

P.

SL

—_

4

SP

Statistical Learning framework (p.

)
)
)
)
)
)
)
9)
)
)
)
)
)
)
)
)

(
(
(
(
(
(
(
(
(
(
(
(
(
(

Signal Processing (p. 39
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