Extending the Compressive Statistical Learning Framework: Quantization, Privacy, and Beyond
Vincent Schellekens
(More)
Journal papers
Sketching Datasets for Large-Scale Learning
Rémi Gribonval, Antoine Chatalic, Nicolas Keriven, Vincent Schellekens, Laurent Jacques, Philip Schniter
Accepted in: IEEE Signal Processing Magasine, September 2021.
Compressive Learning with Privacy Guarantees
Antoine Chatalic, Vincent Schellekens, Florimond Houssiau, Yves-Alexandre de Montjoye, Laurent Jacques, Rémi Gribonval
Accepted in: Information and Inference: A Journal of the IMA.
Vincent Schellekens, Antoine Chatalic, Florimond Houssiau, Yves-Alexandre de Montjoye, Laurent Jacques, Rémi Gribonval
Accepted at SPARS'19, Toulouse, France.
(More)
Differentially Private Compressive K-Means
Vincent Schellekens, Antoine Chatalic, Florimond Houssiau, Yves-Alexandre de Montjoye, Laurent Jacques, Rémi Gribonval
Accepted at ICASSP'19, Brighton, UK.
Taking the edge off quantization: projected back projection in dithered compressive sensing
Chunlei Xu, Vincent Schellekens, Laurent Jacques
In: 2018 IEEE Statistical Signal Processing Workshop (SSP), 2018.