Picture of myself

Vincent Schellekens
researcher in sustainable AI

Pending publications

  1. Asymmetric compressive learning guarantees with applications to quantized sketches
    Vincent Schellekens, Laurent Jacques
    Submitted.
    (More)

Thesis

  1. Extending the Compressive Statistical Learning Framework: Quantization, Privacy, and Beyond
    pdf icon

    Vincent Schellekens
    (More)

Journal papers

  1. Sketching Datasets for Large-Scale Learning
    Rémi Gribonval, Antoine Chatalic, Nicolas Keriven, Vincent Schellekens, Laurent Jacques, Philip Schniter
    Accepted in: IEEE Signal Processing Magasine, September 2021.
    (More)
  2. Breaking the waves: asymmetric random periodic features for low-bitrate kernel machines
    pdf icon

    Vincent Schellekens, Laurent Jacques
    Accepted in: Information and Inference: A Journal of the IMA.
    (More)
  3. Compressive Learning with Privacy Guarantees
    Antoine Chatalic, Vincent Schellekens, Florimond Houssiau, Yves-Alexandre de Montjoye, Laurent Jacques, Rémi Gribonval
    Accepted in: Information and Inference: A Journal of the IMA.
    (More)
  4. Quantized Compressive K-Means
    pdf icon

    Vincent Schellekens, Laurent Jacques
    In: IEEE Signal Processing Letters, Vol. 25, no. 8, p. 1211-1215, 2018.
    (More)

Conference/workshop papers

  1. When compressive learning fails: blame the decoder or the sketch?
    slides icon pdf icon

    Vincent Schellekens, Laurent Jacques
    Accepted at the iTWIST'20 workshop.
  2. Compressive Learning of Generative Networks
    github icon slides icon pdf icon

    Vincent Schellekens, Laurent Jacques
    Accepted at: ESANN'20, Bruges, Belgium.
    (More)
  3. Compressive k-Means with Differential Privacy
    poster icon pdf icon

    Vincent Schellekens, Antoine Chatalic, Florimond Houssiau, Yves-Alexandre de Montjoye, Laurent Jacques, Rémi Gribonval
    Accepted at SPARS'19, Toulouse, France.
    (More)
  4. Differentially Private Compressive K-Means
    slides icon pdf icon

    Vincent Schellekens, Antoine Chatalic, Florimond Houssiau, Yves-Alexandre de Montjoye, Laurent Jacques, Rémi Gribonval
    Accepted at ICASSP'19, Brighton, UK.
    (More)
  5. Compressive Classification (Machine Learning without learning)
    slides icon pdf icon

    Vincent Schellekens, Laurent Jacques
    In: proceedings of the iTWIST'18 workshop, Marseille (France), 2018.
    (More)
  6. Taking the edge off quantization: projected back projection in dithered compressive sensing
    Chunlei Xu, Vincent Schellekens, Laurent Jacques
    In: 2018 IEEE Statistical Signal Processing Workshop (SSP), 2018.
    (More)

Other oral presentations

  1. Generative models as data-driven priors: how to learn them efficiently?
    slides icon

    Presented at FNRS Contact Group "Wavelets and applications" 2019 meeting (22/11/2019).
    (More)